結果

問題 No.840 ほむほむほむら
ユーザー firiexpfiriexp
提出日時 2019-06-14 21:45:43
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 648 ms / 4,000 ms
コード長 4,541 bytes
コンパイル時間 975 ms
コンパイル使用メモリ 102,980 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-15 19:06:14
合計ジャッジ時間 5,233 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 3 ms
6,820 KB
testcase_02 AC 13 ms
6,816 KB
testcase_03 AC 88 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 4 ms
6,816 KB
testcase_07 AC 29 ms
6,816 KB
testcase_08 AC 158 ms
6,820 KB
testcase_09 AC 4 ms
6,820 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 6 ms
6,816 KB
testcase_12 AC 44 ms
6,816 KB
testcase_13 AC 417 ms
6,816 KB
testcase_14 AC 54 ms
6,820 KB
testcase_15 AC 2 ms
6,820 KB
testcase_16 AC 9 ms
6,816 KB
testcase_17 AC 98 ms
6,816 KB
testcase_18 AC 533 ms
6,816 KB
testcase_19 AC 648 ms
6,820 KB
testcase_20 AC 2 ms
6,820 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 9 ms
6,816 KB
testcase_23 AC 616 ms
6,816 KB
testcase_24 AC 9 ms
6,816 KB
testcase_25 AC 2 ms
6,816 KB
testcase_26 AC 13 ms
6,820 KB
testcase_27 AC 622 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <limits>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>

static const int MOD = 1000000007;
using ll = long long;
using u32 = uint32_t;
using namespace std;

template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;

template<ll M = 998244353>
struct modint{
    ll val;
    modint(): val(0){}
    template<typename T>
    explicit modint(T t){val = t%M; if(val < 0) val += M;}

    modint pow(ll k){
        modint res(1), x(val);
        while(k){
            if(k&1) res *= x;
            x *= x;
            k >>= 1;
        }
        return res;
    }
    template<typename T>
    modint& operator=(T a){ val = a%M; if(val < 0) val += M; return *this; }
    modint inv() {return pow(M-2);}
    modint& operator+=(modint a){ val += a.val; if(val >= M) val -= M; return *this;}
    modint& operator-=(modint a){ val += M-a.val; if(val >= M) val -= M; return *this;}
    modint& operator*=(modint a){ val = 1LL*val*a.val%M; return *this;}
    modint& operator/=(modint a){ return (*this) *= a.inv();}
    modint operator+(modint a) const {return modint(val) +=a;}
    modint operator-(modint a) const {return modint(val) -=a;}
    modint operator*(modint a) const {return modint(val) *=a;}
    modint operator/(modint a) const {return modint(val) /=a;}
    modint operator-(){ return modint(-val);}
    bool operator==(const modint a) const {return val == a.val;}
    bool operator!=(const modint a) const {return val != a.val;}
    bool operator<(const modint a) const {return val < a.val;}
};
template<class T>
struct matrix {
    vector<vector<T>> A;
    matrix() = default;
    matrix(size_t n, size_t m) : A(n, vector<T>(m)) {}
    explicit matrix(size_t n) : A(n, vector<T> (n)) {};
    size_t height() const { return (A.size()); }
    size_t width() const { return (A[0].size()); }

    const vector<T> &operator [] (int k) const { return A.at(k); }
    vector<T> &operator[] (int k) { return A.at(k); }

    static matrix I(size_t n){
        matrix mat(n);
        for (int i = 0; i < n; ++i) mat[i][i] = 1;
        return mat;
    }

    matrix &operator+= (const matrix &B){
        size_t h = height(), w = width();
        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                (*this)[i][j] += B[i][j];
            }
        }
    }

    matrix &operator-= (const matrix &B){
        size_t h = height(), w = width();
        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                (*this)[i][j] -= B[i][j];
            }
        }
    }

    matrix &operator*=(const matrix &B)
    {
        size_t n = height(), m = B.width(), p = width();
        matrix C (n, m);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                for (int k = 0; k < p; ++k) {
                    C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
                }
            }
        }
        A.swap(C.A);
        return (*this);
    }

    template <class U>
    matrix &operator%= (const U &m){
        for (int i = 0; i < height(); ++i) {
            for (int j = 0; j < width(); ++j) {
                (*this)[i][j] %= m;
            }
        }
    }

    matrix pow(ll n) const {
        matrix a = (*this), res = I(height());
        while(n > 0){
            if(n & 1) res *= a;
            a *= a;
            n >>= 1;
        }
        return res;
    }
    matrix operator+(const matrix &A) const {return matrix(*this) += A;}
    matrix operator-(const matrix &A) const {return matrix(*this) -= A;}
    matrix operator*(const matrix &A) const {return matrix(*this) *= A;}
    template <class U>
    matrix operator%(const U &m) const {return matrix(*this) %= m;}
};

using mint = modint<>;

int main() {
    int n, k;
    cin >> n >> k;
    int k3 = k*k*k;
    matrix<mint> M(k3, k3);
    auto f = [&k](int a, int b, int c){ return a+(b+c*k)*k; };
    for (int a = 0; a < k; ++a) {
        for (int b = 0; b < k; ++b) {
            for (int c = 0; c < k; ++c) {
                M[f(a, b, c)][f((a+1)%k, b, c)] += mint(1);
                M[f(a, b, c)][f(a, (a+b)%k, c)] += mint(1);
                M[f(a, b, c)][f(a, b, (b+c)%k)] += mint(1);
            }
        }
    }
    M = M.pow(n);
    mint ans(0);
    for (int a = 0; a < k; ++a) {
        for (int b = 0; b < k; ++b) {
            ans += M[0][f(a, b, 0)];
        }
    }
    cout << ans.val << "\n";
    return 0;
}
0