結果
問題 | No.840 ほむほむほむら |
ユーザー | 👑 emthrm |
提出日時 | 2019-06-15 01:07:56 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,062 bytes |
コンパイル時間 | 1,662 ms |
コンパイル使用メモリ | 135,976 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-15 18:57:13 |
合計ジャッジ時間 | 7,255 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 13 ms
5,248 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 18 ms
5,248 KB |
testcase_27 | WA | - |
ソースコード
#include <algorithm> #include <bitset> #include <cassert> #include <cctype> #include <chrono> #define _USE_MATH_DEFINES #include <cmath> #include <cstdio> #include <cstring> #include <ctime> #include <deque> #include <functional> #include <iostream> #include <iterator> #include <map> #include <queue> #include <random> #include <set> #include <sstream> #include <string> #include <tuple> #include <utility> #include <vector> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() const int INF = 0x3f3f3f3f; const long long LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; /*-------------------------------------------------*/ int mod = MOD; struct ModInt { unsigned val; ModInt(): val(0) {} ModInt(long long x) : val(x >= 0 ? x % mod : x % mod + mod) {} ModInt pow(long long exponent) { ModInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } ModInt &operator+=(const ModInt &rhs) { if((val += rhs.val) >= mod) val -= mod; return *this; } ModInt &operator-=(const ModInt &rhs) { if((val += mod - rhs.val) >= mod) val -= mod; return *this; } ModInt &operator*=(const ModInt &rhs) { val = (unsigned long long)val * rhs.val % mod; return *this; } ModInt &operator/=(const ModInt &rhs) { return *this *= rhs.inv(); } bool operator==(const ModInt &rhs) const { return val == rhs.val; } bool operator!=(const ModInt &rhs) const { return val != rhs.val; } bool operator<(const ModInt &rhs) const { return val < rhs.val; } bool operator<=(const ModInt &rhs) const { return val <= rhs.val; } bool operator>(const ModInt &rhs) const { return val > rhs.val; } bool operator>=(const ModInt &rhs) const { return val >= rhs.val; } ModInt operator-() const { return ModInt(-val); } ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; } ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; } ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; } ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; } friend ostream &operator<<(ostream &os, const ModInt &rhs) { return os << rhs.val; } friend istream &operator>>(istream &is, ModInt &rhs) { long long x; is >> x; rhs = ModInt(x); return is; } private: ModInt inv() const { // if (__gcd((int)val, mod) != 1) assert(false); unsigned a = val, b = mod; int x = 1, y = 0; while (b) { unsigned tmp = a / b; a -= tmp * b; swap(a, b); x -= tmp * y; swap(x, y); } return ModInt(x); } }; ModInt abs(const ModInt &x) { return x.val; } struct Combinatorics { Combinatorics(int MAX = 5000000) { MAX <<= 1; fact.resize(MAX + 1); fact_inv.resize(MAX + 1); fact[0] = 1; FOR(i, 1, MAX + 1) fact[i] = fact[i - 1] * i; fact_inv[MAX] = ModInt(1) / fact[MAX]; for (int i = MAX; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i; } ModInt nCk(int n, int k) { if (n < 0 || n < k || k < 0) return ModInt(0); return fact[n] * fact_inv[k] * fact_inv[n - k]; } ModInt nPk(int n, int k) { if (n < 0 || n < k || k < 0) return ModInt(0); return fact[n] * fact_inv[n - k]; } ModInt nHk(int n, int k) { if (n < 0 || k < 0) return ModInt(0); return (k == 0 ? ModInt(1) : nCk(n + k - 1, k)); } private: vector<ModInt> fact, fact_inv; }; template <typename T> struct Matrix { Matrix(int m, int n, T val = 0) : dat(m, vector<T>(n, val)) {} int height() const { return dat.size(); } int width() const { return dat.front().size(); } Matrix pow(long long exponent) { int n = height(); Matrix<T> tmp = *this, res(n, n, 0); REP(i, n) res[i][i] = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } inline const vector<T> &operator[](const int idx) const { return dat[idx]; } inline vector<T> &operator[](const int idx) { return dat[idx]; } Matrix &operator=(const Matrix &rhs) { int m = rhs.height(), n = rhs.width(); dat.resize(m, vector<T>(n)); REP(i, m) REP(j, n) dat[i][j] = rhs[i][j]; return *this; } Matrix &operator+=(const Matrix &rhs) { int m = height(), n = width(); REP(i, m) REP(j, n) dat[i][j] += rhs[i][j]; return *this; } Matrix &operator-=(const Matrix &rhs) { int m = height(), n = width(); REP(i, m) REP(j, n) dat[i][j] -= rhs[i][j]; return *this; } Matrix &operator*=(const Matrix &rhs) { int m = height(), n = rhs.width(), l = width(); vector<vector<T> > res(m, vector<T>(n, 0)); REP(i, m) REP(j, n) { REP(k, l) res[i][j] += dat[i][k] * rhs[k][j]; } swap(dat, res); return *this; } Matrix operator+(const Matrix &rhs) const { return Matrix(*this) += rhs; } Matrix operator-(const Matrix &rhs) const { return Matrix(*this) -= rhs; } Matrix operator*(const Matrix &rhs) const { return Matrix(*this) *= rhs; } private: vector<vector<T> > dat; }; int main() { cin.tie(0); ios::sync_with_stdio(false); // freopen("input.txt", "r", stdin); int n, k; cin >> n >> k; int sanjo = k * k * k; Matrix<ModInt> mat(sanjo, sanjo, 0); REP(x, k) REP(y, k) REP(z, k) { int column = k * k * x + k * y + z; int ho = (k * k * (x + 1) + k * y + z) % sanjo; mat[ho][column] += 1; int mu = (k * k * x + k * (y + x) + z) % sanjo; mat[mu][column] += 1; int ra = (k * k * x + k * y + z + y) % sanjo; mat[ra][column] += 1; } mat = mat.pow(n); Matrix<ModInt> vec(sanjo, 1, 0); vec[0][0] = 1; vec = mat * vec; ModInt ans = 0; REP(x, k) REP(y, k) ans += vec[k * k * x + k * y][0]; cout << ans << '\n'; return 0; }