結果

問題 No.840 ほむほむほむら
ユーザー hitonanodehitonanode
提出日時 2019-06-15 15:31:59
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 8,486 bytes
コンパイル時間 1,733 ms
コンパイル使用メモリ 173,892 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-18 20:09:37
合計ジャッジ時間 4,072 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 8 ms
6,816 KB
testcase_03 AC 48 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 16 ms
6,820 KB
testcase_08 AC 87 ms
6,816 KB
testcase_09 AC 3 ms
6,820 KB
testcase_10 AC 1 ms
6,820 KB
testcase_11 AC 4 ms
6,820 KB
testcase_12 AC 24 ms
6,816 KB
testcase_13 AC 235 ms
6,816 KB
testcase_14 AC 30 ms
6,820 KB
testcase_15 AC 2 ms
6,820 KB
testcase_16 AC 5 ms
6,820 KB
testcase_17 AC 54 ms
6,820 KB
testcase_18 WA -
testcase_19 AC 349 ms
6,816 KB
testcase_20 AC 2 ms
6,816 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 6 ms
6,816 KB
testcase_23 WA -
testcase_24 WA -
testcase_25 AC 2 ms
6,820 KB
testcase_26 AC 9 ms
6,816 KB
testcase_27 AC 335 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
#define FI first
#define SE second
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define POW2(n) (1LL << (n))

constexpr lint MOD = 998244353;
template <int mod>
struct ModInt
{
    using lint = long long;
    int val;
    constexpr ModInt() : val(0) {}
    constexpr void _setval(lint v) { v = (v % mod) + mod; val = v >= mod ? v - mod : v; }
    constexpr ModInt(lint v) { _setval(v); }
    constexpr operator int() const { return val; }
    constexpr ModInt operator+(const ModInt &x) const { return ModInt((lint)val + x.val); }
    constexpr ModInt operator-(const ModInt &x) const { return ModInt((lint)val - x.val); }
    constexpr ModInt operator*(const ModInt &x) const { return ModInt((lint)val * x.val); }
    constexpr ModInt operator/(const ModInt &x) const { return ModInt((lint)val * x.inv()); }
    constexpr ModInt operator-() const { return ModInt(-val); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a % mod + x.val); }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a % mod - x.val); }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a % mod * x.val); }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a % mod * x.inv()); }
    constexpr bool operator==(const ModInt &x) { return val == x.val; }
    constexpr bool operator!=(const ModInt &x) { return val != x.val; }
    friend istream &operator>>(istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; }
    friend ostream &operator<<(ostream &os, const ModInt &x) { os << x.val;  return os; }

    constexpr lint power(lint n) const {
        lint ans = 1, tmp = this->val;
        while (n) {
            if (n & 1) ans = ans * tmp % mod;
            tmp = tmp * tmp % mod;
            n /= 2;
        }
        return ans;
    }
    constexpr lint inv() const { return this->power(mod - 2); }
    constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); }
    constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; }

    inline ModInt fac() const {
        static vector<ModInt> facs;
        int l0 = facs.size();
        if (l0 > this->val) return facs[this->val];

        facs.resize(this->val + 1);
        for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? 1 : facs[i - 1] * i);
        return facs[this->val];
    }

    ModInt doublefac() const {
        lint k = (this->val + 1) / 2;
        if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac();
        else return ModInt(k).fac() * ModInt(2).power(k);
    }

    ModInt nCr(const ModInt &r) const {
        if (this->val < r.val) return ModInt(0);
        return this->fac() / ((*this - r).fac() * r.fac());
    }
};
using mint = ModInt<MOD>;
template<typename T>
struct Matrix
{
    int H, W;
    vector<T> elem;
    typename vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }
    inline T &at(int i, int j) { return elem[i * W + j]; }
    inline T get(int i, int j) const { return elem[i * W + j]; }
    operator vector<vector<T>>() const { vector<vector<T>> ret(H, vector<T>(W)); REP(i, H) REP(j, W) ret[i][j] = at(i, j); return ret; }
    
    Matrix(int H, int W) : H(H), W(W), elem(H * W) {}
    Matrix(const vector<vector<T>> &d) { H = d.size(), W = d[0].size(); elem.resize(H * W); REP(i, H) REP(j, W) elem.at(i, j) = d[i][j]; }

    static Matrix Identity(int N) { Matrix ret(N, N); REP(i, N) ret.at(i, i) = (T)1; return ret; }

    Matrix operator-() const { Matrix ret(H, W); REP(i, H * W) ret.elem[i] = -elem[i]; return ret; }
    Matrix operator+(const Matrix &r) const { Matrix ret(H, W); REP(i, H * W) ret.elem[i] = elem[i] + r.elem[i]; return ret; }
    Matrix operator-(const Matrix &r) const { Matrix ret(H, W); REP(i, H * W) ret.elem[i] = elem[i] - r.elem[i]; return ret; }
    Matrix operator*(const Matrix &r) const {
        Matrix ret(H, r.W);
        REP(i, H) REP(k, W) REP(j, r.W) ret.at(i, j) += this->get(i, k) * r.get(k, j);
        return ret;
    }
    Matrix &operator+=(const Matrix &r) { return *this = *this + r; }
    Matrix &operator-=(const Matrix &r) { return *this = *this - r; }
    Matrix &operator*=(const Matrix &r) { return *this = *this * r; }
    Matrix pow(int64_t n) const {
        Matrix ret = Identity(H);
        if (n == 0) return ret;
        IREP(i, 64 - __builtin_clzll(n))
        {
            ret *= ret;
            if ((n >> i) & 1) ret *= (*this);
        }
        return ret;
    }
    friend ostream &operator<<(ostream &os, const Matrix &x) { os << x.elem;  return os; }
    friend istream &operator>>(istream &is, Matrix &x) { for (auto &v : x.elem) is >> v; return is; }
};
using mat = Matrix<mint>;

int K;
int tod(int i, int j, int k)
{
    i %= K;
    j %= K;
    k %= K;
    return (i * K + j) * K + k;
}

int main()
{
    mint N;
    cin >> N >> K;
    mint D = K * K * K;
    mat m(D, D);
    REP(i, K) REP(j, K) REP(k, K)
    {
        m[tod(i + 1, j, k)][tod(i, j, k)] += 1;
        m[tod(i, j + i, k)][tod(i, j, k)] += 1;
        m[tod(i, j, k + j)][tod(i, j, k)] += 1;
    }

    mat mm = m.pow(N);
    mint ret = 0;
    REP(i, K) REP(j, K) ret += mm[tod(i, j, 0)][0];
    cout << ret.val << endl;
}
0