結果

問題 No.502 階乗を計算するだけ
ユーザー ei1333333ei1333333
提出日時 2019-06-17 23:40:19
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 10,279 bytes
コンパイル時間 2,543 ms
コンパイル使用メモリ 225,668 KB
実行使用メモリ 12,748 KB
最終ジャッジ日時 2024-11-29 12:03:30
合計ジャッジ時間 10,659 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 159 ms
12,636 KB
testcase_01 AC 160 ms
12,508 KB
testcase_02 AC 157 ms
12,508 KB
testcase_03 AC 160 ms
12,504 KB
testcase_04 AC 156 ms
12,380 KB
testcase_05 AC 159 ms
12,380 KB
testcase_06 AC 155 ms
12,508 KB
testcase_07 AC 160 ms
12,508 KB
testcase_08 AC 159 ms
12,380 KB
testcase_09 AC 161 ms
12,508 KB
testcase_10 AC 156 ms
12,508 KB
testcase_11 AC 159 ms
12,504 KB
testcase_12 AC 157 ms
12,380 KB
testcase_13 AC 156 ms
12,380 KB
testcase_14 AC 159 ms
12,504 KB
testcase_15 AC 166 ms
12,512 KB
testcase_16 AC 162 ms
12,508 KB
testcase_17 AC 162 ms
12,508 KB
testcase_18 AC 163 ms
12,384 KB
testcase_19 AC 168 ms
12,508 KB
testcase_20 AC 166 ms
12,504 KB
testcase_21 AC 158 ms
12,636 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 AC 2 ms
5,248 KB
testcase_43 AC 2 ms
5,248 KB
testcase_44 AC 2 ms
5,248 KB
testcase_45 AC 2 ms
5,248 KB
testcase_46 AC 2 ms
5,248 KB
testcase_47 AC 2 ms
5,248 KB
testcase_48 AC 2 ms
5,248 KB
testcase_49 AC 2 ms
5,248 KB
testcase_50 AC 1 ms
5,248 KB
testcase_51 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>

using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;


template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

namespace FastFourierTransform {
  using real=double;

  struct C {
    real x, y;

    C() : x(0), y(0) {}

    C(real x, real y) : x(x), y(y) {}

    inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }

    inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }

    inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }

    inline C conj() const { return C(x, -y); }
  };

  const real PI = acosl(-1);
  int base = 1;
  vector< C > rts = {{0, 0},
                     {1, 0}};
  vector< int > rev = {0, 1};


  void ensure_base(int nbase) {
    if(nbase <= base) return;
    rev.resize(1 << nbase);
    rts.resize(1 << nbase);
    for(int i = 0; i < (1 << nbase); i++) {
      rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
    }
    while(base < nbase) {
      real angle = PI * 2.0 / (1 << (base + 1));
      for(int i = 1 << (base - 1); i < (1 << base); i++) {
        rts[i << 1] = rts[i];
        real angle_i = angle * (2 * i + 1 - (1 << base));
        rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
      }
      ++base;
    }
  }

  void fft(vector< C > &a, int n) {
    assert((n & (n - 1)) == 0);
    int zeros = __builtin_ctz(n);
    ensure_base(zeros);
    int shift = base - zeros;
    for(int i = 0; i < n; i++) {
      if(i < (rev[i] >> shift)) {
        swap(a[i], a[rev[i] >> shift]);
      }
    }
    for(int k = 1; k < n; k <<= 1) {
      for(int i = 0; i < n; i += 2 * k) {
        for(int j = 0; j < k; j++) {
          C z = a[i + j + k] * rts[j + k];
          a[i + j + k] = a[i + j] - z;
          a[i + j] = a[i + j] + z;
        }
      }
    }
  }

  vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) {
    int need = (int) a.size() + (int) b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    ensure_base(nbase);
    int sz = 1 << nbase;
    vector< C > fa(sz);
    for(int i = 0; i < sz; i++) {
      int x = (i < (int) a.size() ? a[i] : 0);
      int y = (i < (int) b.size() ? b[i] : 0);
      fa[i] = C(x, y);
    }
    fft(fa, sz);
    C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
    for(int i = 0; i <= (sz >> 1); i++) {
      int j = (sz - i) & (sz - 1);
      C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
      fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
      fa[i] = z;
    }
    for(int i = 0; i < (sz >> 1); i++) {
      C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
      C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
      fa[i] = A0 + A1 * s;
    }
    fft(fa, sz >> 1);
    vector< int64_t > ret(need);
    for(int i = 0; i < need; i++) {
      ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
    }
    return ret;
  }


};

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< mod >;


template< typename T >
struct ArbitraryModConvolution {
  using real = FastFourierTransform::real;
  using C = FastFourierTransform::C;

  ArbitraryModConvolution() = default;

  vector< T > multiply(const vector< T > &a, const vector< T > &b) {
    int need = (int) a.size() + (int) b.size() - 1;
    int nbase = 0;
    while((1 << nbase) < need) nbase++;
    FastFourierTransform::ensure_base(nbase);
    int sz = 1 << nbase;
    vector< C > fa(sz);
    for(int i = 0; i < a.size(); i++) {
      fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);
    }
    fft(fa, sz);
    vector< C > fb(sz);
    for(int i = 0; i < b.size(); i++) {
      fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);
    }
    fft(fb, sz);
    real ratio = 0.25 / sz;
    C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
    for(int i = 0; i <= (sz >> 1); i++) {
      int j = (sz - i) & (sz - 1);
      C a1 = (fa[i] + fa[j].conj());
      C a2 = (fa[i] - fa[j].conj()) * r2;
      C b1 = (fb[i] + fb[j].conj()) * r3;
      C b2 = (fb[i] - fb[j].conj()) * r4;
      if(i != j) {
        C c1 = (fa[j] + fa[i].conj());
        C c2 = (fa[j] - fa[i].conj()) * r2;
        C d1 = (fb[j] + fb[i].conj()) * r3;
        C d2 = (fb[j] - fb[i].conj()) * r4;
        fa[i] = c1 * d1 + c2 * d2 * r5;
        fb[i] = c1 * d2 + c2 * d1;
      }
      fa[j] = a1 * b1 + a2 * b2 * r5;
      fb[j] = a1 * b2 + a2 * b1;
    }
    fft(fa, sz);
    fft(fb, sz);
    vector< T > ret(need);
    for(int i = 0; i < need; i++) {
      int64_t aa = llround(fa[i].x);
      int64_t bb = llround(fb[i].x);
      int64_t cc = llround(fa[i].y);
      aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
      ret[i] = aa + (bb << 15) + (cc << 30);
    }
    return ret;
  }
};

template< typename T >
struct Combination {
  vector< T > _fact, _rfact;

  Combination(int sz) : _fact(sz + 1), _rfact(sz + 1) {
    _fact[0] = _rfact[sz] = 1;
    for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
    _rfact[sz] /= _fact[sz];
    for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
  }

  inline T fact(int k) const { return _fact[k]; }

  inline T rfact(int k) const { return _rfact[k]; }

  T P(int n, int r) const {
    if(r < 0 || n < r) return 0;
    return fact(n) * rfact(n - r);
  }

  T C(int p, int q) const {
    if(q < 0 || p < q) return 0;
    return fact(p) * rfact(q) * rfact(p - q);
  }

  T H(int n, int r) const {
    if(n < 0 || r < 0) return (0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

template< typename T >
T factorial(int64_t n) {
  if(n >= T::get_mod()) return 0;
  ArbitraryModConvolution< T > fft;

  using ll = long long;

  int64 d = sqrt(T::get_mod());
  Combination< T > comb(2 * d);

  vector< T > seq({1, d + 1});
  seq.reserve(d + 1);

  int sz = 1;
  while(sz < d) {
    vector< T > aux(sz, 1);
    vector< T > f(sz * 4), g(sz * 4);
    for(int i = 0; i <= sz; i++) {
      f[i] = comb.rfact(i) * comb.rfact(sz - i) * seq[i];
      if(((sz + i) & 1) && (f[i] != 0)) f[i] = -f[i];
    }
    vector< T > pf(f);
    vector< T > as;
    as.emplace_back(sz + 1);
    as.emplace_back(T(sz) / d);
    as.emplace_back(as.back() + sz + 1);

    for(int idx = 0; idx < 3; idx++) {
      for(int i = 0; i < sz * 4; i++) f[i] = pf[i];
      for(int i = 1; i < sz * 2 + 2; i++) g[i] = T(1) / (as[idx] - sz + i - 1);
      f = fft.multiply(f, g);
      f.resize(sz * 4);
      T prod = 1;
      for(int i = 0; i <= sz; i++) prod *= as[idx] - i;
      for(int i = 0; i <= sz; i++) {
        f[sz + i + 1] = f[sz + i + 1] * prod;
        prod *= as[idx] + i + 1;
        prod /= as[idx] - (sz - i);
      }
      if(idx == 0) {
        for(int i = 0; i < sz; i++) aux[i] = f[sz + i + 1];
      }
      if(idx == 1) {
        for(int i = 0; i <= sz; i++) seq[i] *= f[sz + i + 1];
      }
      if(idx == 2) {
        for(int i = 0; i < sz; i++) aux[i] *= f[sz + i + 1];
      }
    }
    for(auto x : aux) seq.emplace_back(x);
    sz <<= 1;
  }

  T res = 1;
  int64 l = min(d, (n + 1) / d);
  for(int i = 0; i < l; i++) res *= seq[i];
  for(int i = l * d + 1; i <= n; i++) res *= i;
  return res;
}


int main() {
  int64 X;
  cin >> X;
  if(X >= mod) cout << 0 << endl;
  else cout << factorial< modint >(X) << endl;
}
0