結果
問題 | No.845 最長の切符 |
ユーザー |
![]() |
提出日時 | 2019-06-28 22:27:08 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 65 ms / 3,000 ms |
コード長 | 919 bytes |
コンパイル時間 | 2,006 ms |
コンパイル使用メモリ | 199,460 KB |
最終ジャッジ日時 | 2025-01-07 05:33:48 |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:15:31: warning: format ‘%lld’ expects argument of type ‘long long int*’, but argument 4 has type ‘int64_t*’ {aka ‘long int*’} [-Wformat=] 15 | scanf("%d%d%lld", &a, &b, &c); | ~~~^ ~~ | | | | | int64_t* {aka long int*} | long long int* | %ld main.cpp:36:20: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘int64_t’ {aka ‘long int’} [-Wformat=] 36 | printf("%lld\n", max); | ~~~^ ~~~ | | | | | int64_t {aka long int} | long long int | %ld main.cpp:6:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 6 | scanf("%d%d", &N, &M); | ~~~~~^~~~~~~~~~~~~~~~ main.cpp:15:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 15 | scanf("%d%d%lld", &a, &b, &c); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h> int main() { int N, M; scanf("%d%d", &N, &M); using vi = std::vector<int64_t>; using vvi = std::vector<vi>; vvi graph(N, vi(N)); for (int i{}; i < M; i++) { int a, b; int64_t c; scanf("%d%d%lld", &a, &b, &c); a--; b--; graph[a][b] = std::max(graph[a][b], c); graph[b][a] = std::max(graph[b][a], c); } vvi dp(1 << N, vi(N, -1)); for (int i{}; i < N; i++) dp[1 << i][i] = 0; int64_t max{}; for (int set_i{1}; set_i < (1 << N); set_i++) { for (int now_i{}; now_i < N; now_i++) { max = std::max(max, dp[set_i][now_i]); if ((~set_i >> now_i & 1) || dp[set_i][now_i] < 0) continue; for (int next_i{}; next_i < N; next_i++) if ((~set_i >> next_i & 1) && graph[now_i][next_i] > 0) dp[set_i | (1 << next_i)][next_i] = std::max(dp[set_i | (1 << next_i)][next_i], dp[set_i][now_i] + graph[now_i][next_i]); } } printf("%lld\n", max); return 0; }