結果

問題 No.227 簡単ポーカー
ユーザー yupiteru_kunyupiteru_kun
提出日時 2019-06-30 20:50:12
言語 C#(csc)
(csc 3.9.0)
結果
AC  
実行時間 34 ms / 5,000 ms
コード長 13,437 bytes
コンパイル時間 1,070 ms
コンパイル使用メモリ 123,068 KB
実行使用メモリ 28,700 KB
最終ジャッジ日時 2024-07-06 14:59:48
合計ジャッジ時間 2,171 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 32 ms
26,236 KB
testcase_01 AC 32 ms
26,092 KB
testcase_02 AC 33 ms
26,288 KB
testcase_03 AC 33 ms
26,224 KB
testcase_04 AC 34 ms
26,224 KB
testcase_05 AC 34 ms
24,376 KB
testcase_06 AC 33 ms
26,480 KB
testcase_07 AC 33 ms
26,108 KB
testcase_08 AC 33 ms
26,352 KB
testcase_09 AC 34 ms
28,700 KB
testcase_10 AC 33 ms
28,428 KB
testcase_11 AC 32 ms
26,348 KB
testcase_12 AC 33 ms
26,160 KB
testcase_13 AC 33 ms
28,552 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.CompilerServices;
using static System.Math;
using System.Text;

namespace Program
{
    public static class YUKICODER1
    {
        static public void Solve()
        {
            var aList = NNList(5);
            if (aList.GroupBy(e => e).Count() == 2 && aList.GroupBy(e => e).Any(e => e.Count() == 3))
            {
                Console.WriteLine("FULL HOUSE");

            }
            else if (aList.GroupBy(e => e).Any(e => e.Count() == 3))
            {
                Console.WriteLine("THREE CARD");

            }
            else if (aList.GroupBy(e => e).Count() == 3 && aList.GroupBy(e => e).Any(e => e.Count() == 2))
            {
                Console.WriteLine("TWO PAIR");

            }
            else if (aList.GroupBy(e => e).Any(e => e.Count() == 2))
            {
                Console.WriteLine("ONE PAIR");

            }
            else
            {
                Console.WriteLine("NO HAND");

            }
        }

        static public void Main(string[] args)
        {
            if (args.Length == 0) { var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; Console.SetOut(sw); }
            Solve();
            Console.Out.Flush();
        }
        static Random rand = new Random();
        static class Console_
        {
            private static Queue<string> param = new Queue<string>();
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public static string NextString() { if (param.Count == 0) foreach (var item in Console.ReadLine().Split(' ')) param.Enqueue(item); return param.Dequeue(); }
        }
        static long NN => long.Parse(Console_.NextString());
        static double ND => double.Parse(Console_.NextString());
        static string NS => Console_.NextString();
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static long[] NNList(long N) => Repeat(0, N).Select(_ => NN).ToArray();
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static double[] NDList(long N) => Repeat(0, N).Select(_ => ND).ToArray();
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static string[] NSList(long N) => Repeat(0, N).Select(_ => NS).ToArray();
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static IEnumerable<T> OrderByRand<T>(this IEnumerable<T> x) => x.OrderBy(_ => rand.Next());
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static IEnumerable<T> Repeat<T>(T v, long n) => Enumerable.Repeat<T>(v, (int)n);
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static IEnumerable<int> Range(long s, long c) => Enumerable.Range((int)s, (int)c);
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static void RevSort<T>(T[] l) where T : IComparable { Array.Sort(l, (x, y) => y.CompareTo(x)); }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static void RevSort<T>(T[] l, Comparison<T> comp) where T : IComparable { Array.Sort(l, (x, y) => comp(y, x)); }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static IEnumerable<long> Primes(long x) { if (x < 2) yield break; yield return 2; var halfx = x / 2; var table = new bool[halfx + 1]; var max = (long)(Math.Sqrt(x) / 2); for (long i = 1; i <= max; ++i) { if (table[i]) continue; var add = 2 * i + 1; yield return add; for (long j = 2 * i * (i + 1); j <= halfx; j += add) table[j] = true; } for (long i = max + 1; i <= halfx; ++i) if (!table[i] && 2 * i + 1 <= x) yield return 2 * i + 1; }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static IEnumerable<long> Factors(long x) { if (x < 2) yield break; while (x % 2 == 0) { x /= 2; yield return 2; } var max = (long)Math.Sqrt(x); for (long i = 3; i <= max; i += 2) while (x % i == 0) { x /= i; yield return i; } if (x != 1) yield return x; }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static IEnumerable<long> Divisor(long x) { if (x < 1) yield break; var max = (long)Math.Sqrt(x); for (long i = 1; i <= max; ++i) { if (x % i != 0) continue; yield return i; if (i != x / i) yield return x / i; } }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static long GCD(long a, long b) { while (b > 0) { var tmp = b; b = a % b; a = tmp; } return a; }
        static long LCM(long a, long b) => a * b / GCD(a, b);
        class PQ<T> where T : IComparable
        {
            private List<T> h;
            private Comparison<T> c;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public PQ(int cap, Comparison<T> c, bool asc = true) { h = new List<T>(cap); this.c = asc ? c : (x, y) => c(y, x); }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public PQ(Comparison<T> c, bool asc = true) { h = new List<T>(); this.c = asc ? c : (x, y) => c(y, x); }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public PQ(int cap, bool asc = true) : this(cap, (x, y) => x.CompareTo(y), asc) { }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public PQ(bool asc = true) : this((x, y) => x.CompareTo(y), asc) { }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public void Push(T v) { var i = h.Count; h.Add(v); while (i > 0) { var ni = (i - 1) / 2; if (c(v, h[ni]) >= 0) break; h[i] = h[ni]; i = ni; } h[i] = v; }
            public T Peek => h[0];
            public int Count => h.Count;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public T Pop() { var r = h[0]; var v = h[h.Count - 1]; h.RemoveAt(h.Count - 1); if (h.Count == 0) return r; var i = 0; while (i * 2 + 1 < h.Count) { var i1 = i * 2 + 1; var i2 = i * 2 + 2; if (i2 < h.Count && c(h[i1], h[i2]) > 0) i1 = i2; if (c(v, h[i1]) <= 0) break; h[i] = h[i1]; i = i1; } h[i] = v; return r; }
        }
        class PQ<TKey, TValue> where TKey : IComparable
        {
            private PQ<Tuple<TKey, TValue>> q;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public PQ(int cap, Comparison<TKey> c, bool asc = true) { q = new PQ<Tuple<TKey, TValue>>(cap, (x, y) => c(x.Item1, y.Item1), asc); }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public PQ(Comparison<TKey> c, bool asc = true) { q = new PQ<Tuple<TKey, TValue>>((x, y) => c(x.Item1, y.Item1), asc); }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public PQ(int cap, bool asc = true) : this(cap, (x, y) => x.CompareTo(y), asc) { }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public PQ(bool asc = true) : this((x, y) => x.CompareTo(y), asc) { }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public void Push(TKey k, TValue v) => q.Push(Tuple.Create(k, v));
            public Tuple<TKey, TValue> Peek => q.Peek;
            public int Count => q.Count;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public Tuple<TKey, TValue> Pop() => q.Pop();
        }
        struct Mod : IEquatable<object>
        {
            static public long _mod = 1000000007;
            private long _val;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public Mod(long x) { if (x < _mod && x >= 0) _val = x; else if ((_val = x % _mod) < 0) _val += _mod; }
            static public implicit operator Mod(long x) => new Mod(x);
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public implicit operator long(Mod x) => x._val;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mod operator +(Mod x, Mod y) => x._val + y._val;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mod operator -(Mod x, Mod y) => x._val - y._val;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mod operator *(Mod x, Mod y) => x._val * y._val;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mod operator /(Mod x, Mod y) => x._val * Inverse(y._val);
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public bool operator ==(Mod x, Mod y) => x._val == y._val;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public bool operator !=(Mod x, Mod y) => x._val != y._val;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public long Inverse(long x) { long b = _mod, r = 1, u = 0, t = 0; while (b > 0) { var q = x / b; t = u; u = r - q * u; r = t; t = b; b = x - q * b; x = t; } return r < 0 ? r + _mod : r; }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            bool IEquatable<object>.Equals(object obj) => obj == null ? false : Equals((Mod)obj);
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public override bool Equals(object obj) => obj == null ? false : Equals((Mod)obj);
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public bool Equals(Mod obj) => obj == null ? false : _val == obj._val;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public override int GetHashCode() => _val.GetHashCode();
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public override string ToString() => _val.ToString();
            static private List<Mod> _fact = new List<Mod>() { 1 };
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static private void Build(long n) { if (n >= _fact.Count) for (int i = _fact.Count; i <= n; ++i) _fact.Add(_fact[i - 1] * i); }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mod Comb(long n, long k) { Build(n); if (n == 0 && k == 0) return 1; if (n < k || n < 0) return 0; return _fact[(int)n] / _fact[(int)(n - k)] / _fact[(int)k]; }
        }
        struct Mat<T>
        {
            private T[,] m;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public Mat(T[,] v) { m = (T[,])v.Clone(); }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public implicit operator Mat<T>(T[,] v) => new Mat<T>(v);
            public T this[int r, int c] { get { return m[r, c]; } set { m[r, c] = value; } }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mat<T> operator +(Mat<T> a, T x) { var tm = (T[,])a.m.Clone(); for (int r = 0; r < tm.GetLength(0); ++r) for (int c = 0; c < tm.GetLength(1); ++c) tm[r, c] += (dynamic)x; return tm; }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mat<T> operator +(Mat<T> a, Mat<T> b) { var tm = (T[,])a.m.Clone(); for (int r = 0; r < tm.GetLength(0); ++r) for (int c = 0; c < tm.GetLength(1); ++c) tm[r, c] += (dynamic)b[r, c]; return tm; }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mat<T> operator -(Mat<T> a, T x) { var tm = (T[,])a.m.Clone(); for (int r = 0; r < tm.GetLength(0); ++r) for (int c = 0; c < tm.GetLength(1); ++c) tm[r, c] -= (dynamic)x; return tm; }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mat<T> operator -(Mat<T> a, Mat<T> b) { var tm = (T[,])a.m.Clone(); for (int r = 0; r < tm.GetLength(0); ++r) for (int c = 0; c < tm.GetLength(1); ++c) tm[r, c] -= (dynamic)b[r, c]; return tm; }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mat<T> operator *(Mat<T> a, T x) { var tm = (T[,])a.m.Clone(); for (int r = 0; r < tm.GetLength(0); ++r) for (int c = 0; c < tm.GetLength(1); ++c) tm[r, c] *= (dynamic)x; return tm; }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mat<T> operator *(Mat<T> a, Mat<T> b) { var nr = a.m.GetLength(0); var nc = b.m.GetLength(1); var tm = new T[nr, nc]; for (int i = 0; i < nr; ++i) for (int j = 0; j < nc; ++j) tm[i, j] = (dynamic)0; for (int r = 0; r < nr; ++r) for (int c = 0; c < nc; ++c) for (int i = 0; i < a.m.GetLength(1); ++i) tm[r, c] += a[r, i] * (dynamic)b[i, c]; return tm; }
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            static public Mat<T> Pow(Mat<T> x, long y) { var n = x.m.GetLength(0); var t = (Mat<T>)new T[n, n]; for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) t[i, j] = (dynamic)(i == j ? 1 : 0); while (y != 0) { if ((y & 1) == 1) t *= x; x *= x; y >>= 1; } return t; }
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static Mat<T> Pow<T>(Mat<T> x, long y) => Mat<T>.Pow(x, y);
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static T Pow<T>(T x, long y) { T a = (dynamic)1; while (y != 0) { if ((y & 1) == 1) a *= (dynamic)x; x *= (dynamic)x; y >>= 1; } return a; }
        static List<long> _fact = new List<long>() { 1 };
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static void _Build(long n) { if (n >= _fact.Count) for (int i = _fact.Count; i <= n; ++i) _fact.Add(_fact[i - 1] * i); }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static long Comb(long n, long k) { _Build(n); if (n == 0 && k == 0) return 1; if (n < k || n < 0) return 0; return _fact[(int)n] / _fact[(int)(n - k)] / _fact[(int)k]; }
    }
}
0