結果
| 問題 |
No.807 umg tours
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-06-30 22:55:21 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 394 ms / 4,000 ms |
| コード長 | 63,979 bytes |
| コンパイル時間 | 4,270 ms |
| コンパイル使用メモリ | 246,744 KB |
| 実行使用メモリ | 44,884 KB |
| 最終ジャッジ日時 | 2024-07-07 03:35:59 |
| 合計ジャッジ時間 | 10,995 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
/**
*
*/
//#define NDEBUG
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
// atcoder
//#pragma GCC target("arch=ivybridge,tune=ivybridge")
// header {{{
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
namespace pbds = __gnu_pbds;
// C++20 polyfill {{{
struct IDENTITY {
using is_transparent = void;
template<typename T>
constexpr T&& operator()(T&& x) const noexcept {
return forward<T>(x);
}
};
// }}}
#define CPP_STR(x) CPP_STR_I(x)
#define CPP_CAT(x,y) CPP_CAT_I(x,y)
#define CPP_STR_I(args...) #args
#define CPP_CAT_I(x,y) x ## y
#define SFINAE(pred...) std::enable_if_t<(pred), std::nullptr_t> = nullptr
#define ASSERT(expr...) assert((expr))
using i8 = int8_t;
using u8 = uint8_t;
using i16 = int16_t;
using u16 = uint16_t;
using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;
#ifdef __SIZEOF_INT128__
using i128 = __int128;
using u128 = unsigned __int128;
#endif
using f32 = float;
using f64 = double;
using f80 = __float80;
using f128 = __float128;
using complex32 = complex<f32>;
using complex64 = complex<f64>;
using complex80 = complex<f80>;
// }}}
template<typename T> constexpr T PROCON_INF();
template<> constexpr i64 PROCON_INF<i64>() { return 1'010'000'000'000'000'017LL; }
template<> constexpr f64 PROCON_INF<f64>() { return 1e100; }
constexpr i64 INF = PROCON_INF<i64>();
constexpr f64 FINF = PROCON_INF<f64>();
constexpr i64 MOD = 1'000'000'007LL;
constexpr f64 EPS = 1e-12;
constexpr f64 PI = 3.14159265358979323846;
// util {{{
#define FOR(i, start, end) for(i64 i = (start), CPP_CAT(i,xxxx_end)=(end); i < CPP_CAT(i,xxxx_end); ++i)
#define REP(i, n) FOR(i, 0, n)
#define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(std::begin(cccc), std::end(cccc), ## __VA_ARGS__); })(c))
#define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\
auto iiii = llll <= rrrr ? std::begin(cccc)+llll : std::end(cccc);\
auto jjjj = llll <= rrrr ? std::begin(cccc)+rrrr : std::end(cccc);\
return (f)(iiii, jjjj, ## __VA_ARGS__);\
})(c,l,r))
#define GENERIC(f) ([](auto&&... args) -> decltype(auto) { return (f)(std::forward<decltype(args)>(args)...); })
// ビット演算 {{{
// 引数は [-INF,INF] のみ想定
i64 BIT_I(i64 i) {
return 1LL << i;
}
i64 BIT_I_1(i64 i) {
return BIT_I(i) - 1;
}
i64 BIT_GET(i64 x, i64 i) {
return x & BIT_I(i);
}
bool BIT_TEST(i64 x, i64 i) {
return BIT_GET(x,i) != 0;
}
i64 BIT_SET(i64 x, i64 i) {
return x | BIT_I(i);
}
i64 BIT_CLEAR(i64 x, i64 i) {
return x & ~BIT_I(i);
}
i64 BIT_FLIP(i64 x, i64 i) {
return x ^ BIT_I(i);
}
i64 BIT_ASSIGN(i64 x, i64 i, bool b) {
return b ? BIT_SET(x,i) : BIT_CLEAR(x,i);
}
i64 BIT_COUNT_LEADING_ZEROS(i64 x) {
if(x == 0) return 64;
return __builtin_clzll(x);
}
i64 BIT_COUNT_LEADING_ONES(i64 x) {
return BIT_COUNT_LEADING_ZEROS(~x);
}
i64 BIT_COUNT_TRAILING_ZEROS(i64 x) {
if(x == 0) return 64;
return __builtin_ctzll(x);
}
i64 BIT_COUNT_TRAILING_ONES(i64 x) {
return BIT_COUNT_TRAILING_ZEROS(~x);
}
// 末尾へ続く0を識別するマスクを返す (ex. 0b10100 -> 0b00011)
// x=0 なら -1 を返す
i64 BIT_MASK_TRAILING_ZEROS(i64 x) {
return ~x & (x-1);
}
// 末尾へ続く1を識別するマスクを返す (ex. 0b10011 -> 0b00011)
// x=-1 なら -1 を返す
i64 BIT_MASK_TRAILING_ONES(i64 x) {
return x & ~(x+1);
}
i64 BIT_COUNT_ONES(i64 x) {
return __builtin_popcountll(x);
}
i64 BIT_COUNT_ZEROS(i64 x) {
return 64 - BIT_COUNT_ONES(x);
}
// 先頭から続く冗長な符号ビットを数える (ex. 1 -> 62, -1 -> 63)
i64 BIT_COUNT_LEADING_REDUNDANT_SIGN_BITS(i64 x) {
return __builtin_clrsbll(x);
}
// 1の個数が奇数なら1, 偶数なら0を返す
i64 BIT_PARITY(i64 x) {
return __builtin_parityll(x);
}
// 最右の0を分離する (ex. 0b11001 -> 0b00010)
// x=-1 なら 0 を返す
i64 BIT_EXTRACT_FIRST_ZERO(i64 x) {
return ~x & (x+1);
}
// 最右の1を分離する (ex. 0b10110 -> 0b00010)
// x=0 なら 0 を返す
i64 BIT_EXTRACT_FIRST_ONE(i64 x) {
return x & (-x);
}
// 最右の0を1にする (ex. 0b11001 -> 0b11011)
i64 BIT_FLIP_FIRST_ZERO(i64 x) {
return x | (x+1);
}
// 最右の1を0にする (ex. 0b10110 -> 0b10100)
i64 BIT_FLIP_FIRST_ONE(i64 x) {
return x & (x-1);
}
// 最右の1の位置(1-based)を得る
// x=0 なら 0 を返す
i64 BIT_FIND_FIRST_ONE(i64 x) {
return __builtin_ffsll(x);
}
// 最右の0の位置(1-based)を得る
// x=-1 なら 0 を返す
i64 BIT_FIND_FIRST_ZERO(i64 x) {
return BIT_FIND_FIRST_ONE(~x);
}
// 最右の0をそれより右に伝播する (ex. 0b11011 -> 0b11000)
// x=-1 なら -1 を返す
i64 BIT_PROPAGATE_FIRST_ZERO(i64 x) {
if(x == -1) return -1;
return x & (x+1);
}
// 最右の1をそれより右に伝播する (ex. 0b10100 -> 0b10111)
// x=0 なら 0 を返す
i64 BIT_PROPAGATE_FIRST_ONE(i64 x) {
if(x == 0) return 0;
return x | (x-1);
}
// 最右の0および末尾へ続く1を識別するマスクを返す (ex. 0b11011 -> 0b00111)
// x=-1 なら 0 を返す
i64 BIT_MASKTO_FIRST_ZERO(i64 x) {
if(x == -1) return 0;
return x ^ (x+1);
}
// 最右の1および末尾へ続く0を識別するマスクを返す (ex. 0b10100 -> 0b00111)
// x=0 なら 0 を返す
i64 BIT_MASKTO_FIRST_ONE(i64 x) {
if(x == 0) return 0;
return x ^ (x-1);
}
// 最右の連続した0を1にする (ex. 0b101001 -> 0b101111)
// x=-1 なら -1 を返す
i64 BIT_FLIP_FIRST_ZEROS(i64 x) {
return ((x&(x+1))-1) | x;
}
// 最右の連続した1を0にする (ex. 0b10110 -> 0b10000)
// x=0 なら 0 を返す
i64 BIT_FLIP_FIRST_ONES(i64 x) {
return ((x|(x-1))+1) & x;
}
// X ⊆ {0,1,...,n-1}, |X| = k なる部分集合 X を昇順に列挙する
// comb(n,k) 個
//
// ex.
// ```
// i64 x = BIT_I_1(3);
// do {
// // ...
// } while(BIT_NEXT_SET_SIZED(x, 10));
// ```
bool BIT_NEXT_SET_SIZED(i64& x, i64 n) {
if(x == 0) return false;
i64 t = BIT_PROPAGATE_FIRST_ONE(x) + 1;
x = t | (BIT_MASK_TRAILING_ZEROS(t) >> (BIT_COUNT_TRAILING_ZEROS(x)+1));
return x < BIT_I(n);
}
// 集合 Y の部分集合 X を昇順に列挙する
// 2^|Y| 個
//
// ex.
// ```
// i64 y = 0b10101;
// i64 x = 0;
// do {
// // ...
// } while(BIT_NEXT_SUBSET(x, y));
// ```
bool BIT_NEXT_SUBSET(i64& x, i64 y) {
if(x == y) return false;
x = (x-y) & y;
return true;
}
// 集合 Y の部分集合 X を降順に列挙する
// 2^|Y| 個
//
// ex.
// ```
// i64 y = 0b10101;
// i64 x = y;
// do {
// // ...
// } while(BIT_PREV_SUBSET(x, y));
// ```
bool BIT_PREV_SUBSET(i64& x, i64 y) {
if(x == 0) return false;
x = (x-1) & y;
return true;
}
// 集合 Y を包含する集合 X ⊆ {0,1,...,n-1} を昇順に列挙する
// 2^(n-|Y|) 個
//
// ex.
// ```
// i64 y = 0b00010101;
// i64 x = y;
// do {
// // ...
// } while(BIT_NEXT_SUPERSET(x, 8, y));
// ```
bool BIT_NEXT_SUPERSET(i64& x, i64 n, i64 y) {
x = (x+1) | y;
return x < BIT_I(n);
}
// }}}
// BoolArray {{{
class BoolArray {
public:
using value_type = bool;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = value_type*;
using const_iterator = const value_type*;
using difference_type = ptrdiff_t;
using size_type = size_t;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
BoolArray() : BoolArray(0) {}
explicit BoolArray(size_t n) : BoolArray(n,false) {}
BoolArray(size_t n, bool value) : size_(n), data_(new bool[n]) {
ALL(fill, *this, value);
}
BoolArray(initializer_list<bool> init) : size_(init.size()), data_(new bool[size_]) {
ALL(copy, init, begin());
}
template<typename InputIt>
BoolArray(InputIt first, InputIt last) {
deque<bool> tmp(first, last);
size_ = tmp.size();
data_ = new bool[size_];
ALL(copy, tmp, begin());
}
BoolArray(const BoolArray& other) : size_(other.size_), data_(new bool[size_]) {
ALL(copy, other, begin());
}
BoolArray(BoolArray&& other) noexcept : size_(other.size_), data_(other.data_) {
other.data_ = nullptr;
}
BoolArray& operator=(const BoolArray& other) {
if(this == &other) return *this;
if(!data_ || size_ < other.size_) {
delete[] data_;
data_ = new bool[other.size_];
}
size_ = other.size_;
ALL(copy, other, begin());
return *this;
}
BoolArray& operator=(BoolArray&& other) noexcept {
if(this == &other) return *this;
size_ = other.size_;
data_ = other.data_;
other.data_ = nullptr;
return *this;
}
BoolArray& operator=(initializer_list<bool> init) {
if(!data_ || size_ < init.size()) {
delete[] data_;
data_ = new bool[init.size()];
}
size_ = init.size();
ALL(copy, init, begin());
return *this;
}
void swap(BoolArray& other) noexcept {
std::swap(size_, other.size_);
std::swap(data_, other.data_);
}
~BoolArray() {
delete[] data_;
data_ = nullptr;
}
bool empty() const noexcept { return size_ == 0; }
size_type size() const noexcept { return size_; }
size_type max_size() const noexcept { return 1'010'000'000; }
iterator begin() noexcept { return data_; }
const_iterator begin() const noexcept { return data_; }
const_iterator cbegin() const noexcept { return data_; }
iterator end() noexcept { return data_+size_; }
const_iterator end() const noexcept { return data_+size_; }
const_iterator cend() const noexcept { return data_+size_; }
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); }
const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); }
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); }
const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); }
reference operator[](size_type pos) { return data_[pos]; }
const_reference operator[](size_type pos) const { return data_[pos]; }
bool* data() noexcept { return data_; }
const bool* data() const noexcept { return data_; }
private:
size_t size_;
bool* data_;
};
void swap(BoolArray& lhs, BoolArray& rhs) noexcept { lhs.swap(rhs); }
bool operator==(const BoolArray& lhs, const BoolArray& rhs) {
return equal(begin(lhs), end(lhs), begin(rhs), end(rhs));
}
bool operator!=(const BoolArray& lhs, const BoolArray& rhs) { return !(lhs == rhs); }
bool operator<(const BoolArray& lhs, const BoolArray& rhs) {
return lexicographical_compare(begin(lhs), end(lhs), begin(rhs), end(rhs));
}
bool operator> (const BoolArray& lhs, const BoolArray& rhs) { return rhs < lhs; }
bool operator<=(const BoolArray& lhs, const BoolArray& rhs) { return !(rhs < lhs); }
bool operator>=(const BoolArray& lhs, const BoolArray& rhs) { return !(lhs < rhs); }
// }}}
// 多次元 vector {{{
// 最内周が vector<bool> になるのを避けるための措置
template<typename T>
struct Array1Container {
using type = vector<T>;
};
template<>
struct Array1Container<bool> {
using type = BoolArray;
};
// イテレート用
template<typename T>
struct is_arrayn_container : false_type {};
template<typename T>
struct is_arrayn_container<vector<T>> : true_type {};
template<>
struct is_arrayn_container<BoolArray> : true_type {};
template<typename T>
auto arrayn_make(i64 n, T x) {
using Cont = typename Array1Container<T>::type;
return Cont(n, x);
}
template<typename T, typename... Args, SFINAE(sizeof...(Args) >= 2)>
auto arrayn_make(i64 n, Args... args) {
auto inner = arrayn_make<T>(args...);
return vector<decltype(inner)>(n, inner);
}
template<typename T, typename F, SFINAE(!is_arrayn_container<T>::value)>
void arrayn_foreach(T& e, F f) {
f(e);
}
template<typename T, typename F, SFINAE(is_arrayn_container<T>::value)>
void arrayn_foreach(T& ary, F f) {
for(auto& e : ary)
arrayn_foreach(e, f);
}
template<typename T, typename U, SFINAE(is_arrayn_container<T>::value)>
void arrayn_fill(T& ary, const U& x) {
arrayn_foreach(ary, [&x](auto& e) { e = x; });
}
// }}}
// 多次元生配列 {{{
template<typename T, typename F, SFINAE(rank<T>::value==0)>
void CARRAY_FOREACH(T& e, F f) {
f(e);
}
template<typename Array, typename F, SFINAE(rank<Array>::value!=0)>
void CARRAY_FOREACH(Array& ary, F f) {
for(auto& e : ary)
CARRAY_FOREACH(e, f);
}
template<typename Array, typename U, SFINAE(rank<Array>::value!=0)>
void CARRAY_FILL(Array& ary, const U& v) {
CARRAY_FOREACH(ary, [&v](auto& e) { e = v; });
}
// }}}
// メモ化ラッパー (8引数まで) {{{
template<i64 N1, typename F>
class Memoized1 {
static_assert(N1 >= 1, "");
public:
explicit Memoized1(F&& f) : f_(forward<F>(f)) {}
decltype(auto) operator()(i64 x1) const {
using R = decltype(f_(*this,x1));
static bool done[N1] {};
static R memo[N1];
if(!done[x1]) {
memo[x1] = f_(*this,x1);
done[x1] = true;
}
return memo[x1];
}
private:
const F f_;
};
template<i64 N1, i64 N2, typename F>
class Memoized2 {
static_assert(N1 >= 1 && N2 >= 1, "");
public:
explicit Memoized2(F&& f) : f_(forward<F>(f)) {}
decltype(auto) operator()(i64 x1, i64 x2) const {
using R = decltype(f_(*this,x1,x2));
static bool done[N1][N2] {};
static R memo[N1][N2];
if(!done[x1][x2]) {
memo[x1][x2] = f_(*this,x1,x2);
done[x1][x2] = true;
}
return memo[x1][x2];
}
private:
const F f_;
};
template<i64 N1, i64 N2, i64 N3, typename F>
class Memoized3 {
static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1, "");
public:
explicit Memoized3(F&& f) : f_(forward<F>(f)) {}
decltype(auto) operator()(i64 x1, i64 x2, i64 x3) const {
using R = decltype(f_(*this,x1,x2,x3));
static bool done[N1][N2][N3] {};
static R memo[N1][N2][N3];
if(!done[x1][x2][x3]) {
memo[x1][x2][x3] = f_(*this,x1,x2,x3);
done[x1][x2][x3] = true;
}
return memo[x1][x2][x3];
}
private:
const F f_;
};
template<i64 N1, i64 N2, i64 N3, i64 N4, typename F>
class Memoized4 {
static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1, "");
public:
explicit Memoized4(F&& f) : f_(forward<F>(f)) {}
decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4) const {
using R = decltype(f_(*this,x1,x2,x3,x4));
static bool done[N1][N2][N3][N4] {};
static R memo[N1][N2][N3][N4];
if(!done[x1][x2][x3][x4]) {
memo[x1][x2][x3][x4] = f_(*this,x1,x2,x3,x4);
done[x1][x2][x3][x4] = true;
}
return memo[x1][x2][x3][x4];
}
private:
const F f_;
};
template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, typename F>
class Memoized5 {
static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1 && N5 >= 1, "");
public:
explicit Memoized5(F&& f) : f_(forward<F>(f)) {}
decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4, i64 x5) const {
using R = decltype(f_(*this,x1,x2,x3,x4,x5));
static bool done[N1][N2][N3][N4][N5] {};
static R memo[N1][N2][N3][N4][N5];
if(!done[x1][x2][x3][x4][x5]) {
memo[x1][x2][x3][x4][x5] = f_(*this,x1,x2,x3,x4,x5);
done[x1][x2][x3][x4][x5] = true;
}
return memo[x1][x2][x3][x4][x5];
}
private:
const F f_;
};
template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, typename F>
class Memoized6 {
static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1 && N5 >= 1 && N6 >= 1, "");
public:
explicit Memoized6(F&& f) : f_(forward<F>(f)) {}
decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4, i64 x5, i64 x6) const {
using R = decltype(f_(*this,x1,x2,x3,x4,x5,x6));
static bool done[N1][N2][N3][N4][N5][N6] {};
static R memo[N1][N2][N3][N4][N5][N6];
if(!done[x1][x2][x3][x4][x5][x6]) {
memo[x1][x2][x3][x4][x5][x6] = f_(*this,x1,x2,x3,x4,x5,x6);
done[x1][x2][x3][x4][x5][x6] = true;
}
return memo[x1][x2][x3][x4][x5][x6];
}
private:
const F f_;
};
template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, i64 N7, typename F>
class Memoized7 {
static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1 && N5 >= 1 && N6 >= 1 && N7 >= 1, "");
public:
explicit Memoized7(F&& f) : f_(forward<F>(f)) {}
decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4, i64 x5, i64 x6, i64 x7) const {
using R = decltype(f_(*this,x1,x2,x3,x4,x5,x6,x7));
static bool done[N1][N2][N3][N4][N5][N6][N7] {};
static R memo[N1][N2][N3][N4][N5][N6][N7];
if(!done[x1][x2][x3][x4][x5][x6][x7]) {
memo[x1][x2][x3][x4][x5][x6][x7] = f_(*this,x1,x2,x3,x4,x5,x6,x7);
done[x1][x2][x3][x4][x5][x6][x7] = true;
}
return memo[x1][x2][x3][x4][x5][x6][x7];
}
private:
const F f_;
};
template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, i64 N7, i64 N8, typename F>
class Memoized8 {
static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1 && N5 >= 1 && N6 >= 1 && N7 >= 1 && N8 >= 1, "");
public:
explicit Memoized8(F&& f) : f_(forward<F>(f)) {}
decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4, i64 x5, i64 x6, i64 x7, i64 x8) const {
using R = decltype(f_(*this,x1,x2,x3,x4,x5,x6,x7,x8));
static bool done[N1][N2][N3][N4][N5][N6][N7][N8] {};
static R memo[N1][N2][N3][N4][N5][N6][N7][N8];
if(!done[x1][x2][x3][x4][x5][x6][x7][x8]) {
memo[x1][x2][x3][x4][x5][x6][x7][x8] = f_(*this,x1,x2,x3,x4,x5,x6,x7,x8);
done[x1][x2][x3][x4][x5][x6][x7][x8] = true;
}
return memo[x1][x2][x3][x4][x5][x6][x7][x8];
}
private:
const F f_;
};
template<i64 N1, typename F>
decltype(auto) MEMOIZE(F&& f) {
return Memoized1<N1,F>(forward<F>(f));
}
template<i64 N1, i64 N2, typename F>
decltype(auto) MEMOIZE(F&& f) {
return Memoized2<N1,N2,F>(forward<F>(f));
}
template<i64 N1, i64 N2, i64 N3, typename F>
decltype(auto) MEMOIZE(F&& f) {
return Memoized3<N1,N2,N3,F>(forward<F>(f));
}
template<i64 N1, i64 N2, i64 N3, i64 N4, typename F>
decltype(auto) MEMOIZE(F&& f) {
return Memoized4<N1,N2,N3,N4,F>(forward<F>(f));
}
template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, typename F>
decltype(auto) MEMOIZE(F&& f) {
return Memoized5<N1,N2,N3,N4,N5,F>(forward<F>(f));
}
template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, typename F>
decltype(auto) MEMOIZE(F&& f) {
return Memoized6<N1,N2,N3,N4,N5,N6,F>(forward<F>(f));
}
template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, i64 N7, typename F>
decltype(auto) MEMOIZE(F&& f) {
return Memoized7<N1,N2,N3,N4,N5,N6,N7,F>(forward<F>(f));
}
template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, i64 N7, i64 N8, typename F>
decltype(auto) MEMOIZE(F&& f) {
return Memoized8<N1,N2,N3,N4,N5,N6,N7,N8,F>(forward<F>(f));
}
// }}}
// lambda で再帰 {{{
template<typename F>
class FixPoint {
public:
explicit constexpr FixPoint(F&& f) : f_(forward<F>(f)) {}
template<typename... Args>
constexpr decltype(auto) operator()(Args&&... args) const {
return f_(*this, forward<Args>(args)...);
}
private:
const F f_;
};
template<typename F>
decltype(auto) FIX(F&& f) {
return FixPoint<F>(forward<F>(f));
}
// }}}
// tuple {{{
template<typename... TS, SFINAE(sizeof...(TS) > 0)>
constexpr auto tuple_head(const tuple<TS...>& t) {
return get<0>(t);
}
template<typename... TS, size_t i, size_t... is>
constexpr auto tuple_tail_helper(const tuple<TS...>& t, index_sequence<i,is...>) {
return make_tuple(get<is>(t)...);
}
template<typename... TS, SFINAE(sizeof...(TS) == 1)>
constexpr auto tuple_tail(const tuple<TS...>&) {
return make_tuple();
}
template<typename... TS, SFINAE(sizeof...(TS) > 1)>
constexpr auto tuple_tail(const tuple<TS...>& t) {
return tuple_tail_helper(t, make_index_sequence<sizeof...(TS)>());
}
template<i64 I=0, typename F, typename... TS, SFINAE(sizeof...(TS) == I)>
void tuple_enumerate(tuple<TS...>&, F&&) {}
template<i64 I=0, typename F, typename... TS, SFINAE(sizeof...(TS) > I)>
void tuple_enumerate(tuple<TS...>& t, F&& f) {
f(I, get<I>(t));
tuple_enumerate<I+1>(t, f);
}
template<i64 I=0, typename F, typename... TS, SFINAE(sizeof...(TS) == I)>
void tuple_enumerate(const tuple<TS...>&, F&&) {}
template<i64 I=0, typename F, typename... TS, SFINAE(sizeof...(TS) > I)>
void tuple_enumerate(const tuple<TS...>& t, F&& f) {
f(I, get<I>(t));
tuple_enumerate<I+1>(t, f);
}
// }}}
// FST/SND {{{
template<typename T1, typename T2>
T1& FST(pair<T1,T2>& p) {
return p.first;
}
template<typename T1, typename T2>
const T1& FST(const pair<T1,T2>& p) {
return p.first;
}
template<typename T1, typename T2>
T2& SND(pair<T1,T2>& p) {
return p.second;
}
template<typename T1, typename T2>
const T2& SND(const pair<T1,T2>& p) {
return p.second;
}
template<typename... TS, SFINAE(sizeof...(TS) >= 1)>
auto& FST(tuple<TS...>& t) {
return get<0>(t);
}
template<typename... TS, SFINAE(sizeof...(TS) >= 1)>
const auto& FST(const tuple<TS...>& t) {
return get<0>(t);
}
template<typename... TS, SFINAE(sizeof...(TS) >= 2)>
auto& SND(tuple<TS...>& t) {
return get<1>(t);
}
template<typename... TS, SFINAE(sizeof...(TS) >= 2)>
const auto& SND(const tuple<TS...>& t) {
return get<1>(t);
}
// }}}
template<typename T1, typename T2, typename Comp=less<>,
SFINAE(
is_integral<T1>::value &&
is_integral<T2>::value &&
is_signed<T1>::value != is_unsigned<T2>::value
)>
common_type_t<T1,T2> MAX(T1 x, T2 y, Comp comp={}) {
return max<common_type_t<T1,T2>>(x, y, comp);
}
template<typename T1, typename T2, typename Comp=less<>,
SFINAE(
is_floating_point<T1>::value &&
is_floating_point<T2>::value
)>
common_type_t<T1,T2> MAX(T1 x, T2 y, Comp comp={}) {
return max<common_type_t<T1,T2>>(x, y, comp);
}
template<typename T, typename Comp=less<>>
const T& MAX(const T& x, const T& y, Comp comp={}) {
return max(x, y, comp);
}
template<typename T, typename Comp=less<>>
T MAX(initializer_list<T> ilist, Comp comp={}) {
return max(ilist, comp);
}
template<typename T1, typename T2, typename Comp=less<>,
SFINAE(
is_integral<T1>::value &&
is_integral<T2>::value &&
is_signed<T1>::value != is_unsigned<T2>::value
)>
common_type_t<T1,T2> MIN(T1 x, T2 y, Comp comp={}) {
return min<common_type_t<T1,T2>>(x, y, comp);
}
template<typename T1, typename T2, typename Comp=less<>,
SFINAE(
is_floating_point<T1>::value &&
is_floating_point<T2>::value
)>
common_type_t<T1,T2> MIN(T1 x, T2 y, Comp comp={}) {
return min<common_type_t<T1,T2>>(x, y, comp);
}
template<typename T, typename Comp=less<>>
const T& MIN(const T& x, const T& y, Comp comp={}) {
return min(x, y, comp);
}
template<typename T, typename Comp=less<>>
T MIN(initializer_list<T> ilist, Comp comp={}) {
return min(ilist, comp);
}
template<typename T1, typename T2, typename T3, typename Comp=less<>, SFINAE(
is_integral<T1>::value &&
is_integral<T2>::value &&
is_integral<T3>::value &&
is_signed<T1>::value != is_unsigned<T2>::value &&
is_signed<T2>::value != is_unsigned<T3>::value
)>
common_type_t<T1,T2,T3> CLAMP(T1 x, T2 xmin, T3 xmax, Comp comp={}) {
ASSERT(!comp(xmax, xmin));
if(comp(x, xmin)) return xmin;
if(comp(xmax, x)) return xmax;
return x;
}
template<typename T1, typename T2, typename T3, typename Comp=less<>, SFINAE(
is_floating_point<T1>::value &&
is_floating_point<T2>::value &&
is_floating_point<T3>::value
)>
common_type_t<T1,T2,T3> CLAMP(T1 x, T2 xmin, T3 xmax, Comp comp={}) {
ASSERT(!comp(xmax, xmin));
if(comp(x, xmin)) return xmin;
if(comp(xmax, x)) return xmax;
return x;
}
template<typename T, typename Comp=less<>>
const T& CLAMP(const T& x, const T& xmin, const T& xmax, Comp comp={}) {
ASSERT(!comp(xmax, xmin));
if(comp(x, xmin)) return xmin;
if(comp(xmax, x)) return xmax;
return x;
}
template<typename T>
T ABS(T x) {
static_assert(is_signed<T>::value, "ABS(): argument must be signed");
return x < 0 ? -x : x;
}
f64 ROUND(f64 x) {
return round(x);
}
i64 IROUND(f64 x) {
return llround(x);
}
template<typename C>
i64 SIZE(const C& c) { return static_cast<i64>(c.size()); }
template<typename T, size_t N>
i64 SIZE(const T (&)[N]) { return static_cast<i64>(N); }
bool is_odd (i64 x) { return x % 2 != 0; }
bool is_even(i64 x) { return x % 2 == 0; }
template<typename T> i64 cmp(T x, T y) { return (y<x) - (x<y); }
template<typename T> i64 sgn(T x) { return cmp(x, T(0)); }
// 事前条件: a >= 0, b >= 0
i64 gcd_impl(i64 a, i64 b) {
if(b == 0) return a;
return gcd_impl(b, a%b);
}
// GCD(0,0) = 0
i64 GCD(i64 a, i64 b) {
return gcd_impl(ABS(a), ABS(b));
}
// LCM(0,x) は未定義
i64 LCM(i64 a, i64 b) {
ASSERT(a != 0 && b != 0);
a = ABS(a);
b = ABS(b);
return a / gcd_impl(a,b) * b;
}
// lo:OK, hi:NG
template<typename Pred>
i64 bisect_integer(i64 lo, i64 hi, Pred pred) {
ASSERT(lo < hi);
while(lo+1 < hi) {
i64 mid = (lo+hi) / 2;
if(pred(mid))
lo = mid;
else
hi = mid;
}
return lo;
}
template<typename Pred>
f64 bisect_real(f64 lo, f64 hi, Pred pred, i64 iter=100) {
ASSERT(lo < hi);
REP(_, iter) {
f64 mid = (lo+hi) / 2;
if(pred(mid))
lo = mid;
else
hi = mid;
}
return lo;
}
i64 ipow(i64 x, i64 e) {
ASSERT(e >= 0);
i64 res = 1;
REP(_, e) {
res *= x;
}
return res;
}
i64 sqrt_floor(i64 x) {
ASSERT(x >= 0);
i64 lo = 0;
i64 hi = MIN(x/2+2, 3037000500LL);
return bisect_integer(lo, hi, [x](i64 r) { return r*r <= x; });
}
i64 sqrt_ceil(i64 x) {
i64 r = sqrt_floor(x);
return r*r == x ? r : r+1;
}
// 0 <= log2_ceil(x) <= 63
i64 log2_ceil(i64 x) {
ASSERT(x > 0);
return 64 - BIT_COUNT_LEADING_ZEROS(x-1);
}
// 0 <= log2_floor(x) <= 62
i64 log2_floor(i64 x) {
ASSERT(x > 0);
return 63 - BIT_COUNT_LEADING_ZEROS(x);
}
// 0 <= log10_ceil(x) <= 19
i64 log10_ceil(i64 x) {
ASSERT(x > 0);
static constexpr i8 TABLE1[64] {
-1, 19, 19, 19, 19, 18, 18, 18,
17, 17, 17, 16, 16, 16, 16, 15,
15, 15, 14, 14, 14, 13, 13, 13,
13, 12, 12, 12, 11, 11, 11, 10,
10, 10, 10, 9, 9, 9, 8, 8,
8, 7, 7, 7, 7, 6, 6, 6,
5, 5, 5, 4, 4, 4, 4, 3,
3, 3, 2, 2, 2, 1, 1, 0,
};
static constexpr i64 TABLE2[20] {
0LL,
1LL,
10LL,
100LL,
1000LL,
10000LL,
100000LL,
1000000LL,
10000000LL,
100000000LL,
1000000000LL,
10000000000LL,
100000000000LL,
1000000000000LL,
10000000000000LL,
100000000000000LL,
1000000000000000LL,
10000000000000000LL,
100000000000000000LL,
1000000000000000000LL,
};
i64 res = TABLE1[BIT_COUNT_LEADING_ZEROS(x)];
if(x <= TABLE2[res]) --res;
return res;
}
// 0 <= log10_floor(x) <= 18
i64 log10_floor(i64 x) {
ASSERT(x > 0);
static constexpr i8 TABLE1[64] {
-1, 18, 18, 18, 18, 17, 17, 17,
16, 16, 16, 15, 15, 15, 15, 14,
14, 14, 13, 13, 13, 12, 12, 12,
12, 11, 11, 11, 10, 10, 10, 9,
9, 9, 9, 8, 8, 8, 7, 7,
7, 6, 6, 6, 6, 5, 5, 5,
4, 4, 4, 3, 3, 3, 3, 2,
2, 2, 1, 1, 1, 0, 0, 0,
};
static constexpr i64 TABLE2[19] {
1LL,
10LL,
100LL,
1000LL,
10000LL,
100000LL,
1000000LL,
10000000LL,
100000000LL,
1000000000LL,
10000000000LL,
100000000000LL,
1000000000000LL,
10000000000000LL,
100000000000000LL,
1000000000000000LL,
10000000000000000LL,
100000000000000000LL,
1000000000000000000LL,
};
i64 res = TABLE1[BIT_COUNT_LEADING_ZEROS(x)];
if(x < TABLE2[res]) --res;
return res;
}
// 2^n - 1 の形かどうか
bool is_mersenne(i64 x) {
ASSERT(x >= 0);
return (x&(x+1)) == 0;
}
bool is_pow2(i64 x) {
ASSERT(x > 0);
return (x&(x-1)) == 0;
}
// x > 0
i64 pow2_ceil(i64 x) {
return BIT_I(log2_ceil(x));
}
// x > 0
i64 pow2_floor(i64 x) {
return BIT_I(log2_floor(x));
}
// Haskell の divMod と同じ
pair<i64,i64> divmod(i64 a, i64 b) {
i64 q = a / b;
i64 r = a % b;
if((b>0 && r<0) || (b<0 && r>0)) {
--q;
r += b;
}
return {q,r};
}
i64 div_ceil(i64 a, i64 b) {
i64 q = a / b;
i64 r = a % b;
if((b>0 && r>0) || (b<0 && r<0))
++q;
return q;
}
i64 div_floor(i64 a, i64 b) {
return divmod(a,b).first;
}
i64 modulo(i64 a, i64 b) {
return divmod(a,b).second;
}
// x を align の倍数に切り上げる
i64 align_ceil(i64 x, i64 align) {
ASSERT(align > 0);
return div_ceil(x,align) * align;
}
// x を align の倍数に切り下げる
i64 align_floor(i64 x, i64 align) {
ASSERT(align > 0);
return div_floor(x,align) * align;
}
bool feq(f64 x, f64 y, f64 eps=EPS) {
return fabs(x-y) < eps;
}
template<typename T, typename U, typename Comp=less<>>
bool chmax(T& xmax, const U& x, Comp comp={}) {
if(comp(xmax, x)) {
xmax = x;
return true;
}
return false;
}
template<typename T, typename U, typename Comp=less<>>
bool chmin(T& xmin, const U& x, Comp comp={}) {
if(comp(x, xmin)) {
xmin = x;
return true;
}
return false;
}
template<typename Pred>
i64 arg_find(i64 lo, i64 hi, Pred pred) {
ASSERT(lo < hi);
FOR(x, lo, hi) {
if(pred(x)) return x;
}
return INF;
}
template<typename F>
i64 arg_max(i64 lo, i64 hi, F f) {
ASSERT(lo < hi);
i64 res = lo;
auto ymax = f(lo);
FOR(x, lo+1, hi) {
if(chmax(ymax, f(x)))
res = x;
}
return res;
}
template<typename F>
i64 arg_min(i64 lo, i64 hi, F f) {
ASSERT(lo < hi);
i64 res = lo;
auto ymin = f(lo);
FOR(x, lo+1, hi) {
if(chmin(ymin, f(x)))
res = x;
}
return res;
}
template<typename Pred>
i64 arg_find_r(i64 lo, i64 hi, Pred pred) {
i64 x = arg_find(-hi+1, lo+1, [pred](i64 xx) { return pred(-xx); });
return x == INF ? INF : -x;
}
template<typename F>
i64 arg_max_r(i64 lo, i64 hi, F f) {
return -arg_max(-hi+1, lo+1, [f](i64 x) { return f(-x); });
}
template<typename F>
i64 arg_min_r(i64 lo, i64 hi, F f) {
return -arg_min(-hi+1, lo+1, [f](i64 x) { return f(-x); });
}
template<typename ForwardIt, typename T, typename Comp=less<>>
ForwardIt bsearch_find(ForwardIt first, ForwardIt last, const T& x, Comp comp={}) {
auto it = lower_bound(first, last, x, comp);
if(it == last || comp(x,*it)) return last;
return it;
}
// x 未満の最後の要素
template<typename BidiIt, typename T, typename Comp=less<>>
BidiIt bsearch_lt(BidiIt first, BidiIt last, const T& x, Comp comp={}) {
auto it = lower_bound(first, last, x, comp);
if(it == first) return last;
return prev(it);
}
// x 以下の最後の要素
template<typename BidiIt, typename T, typename Comp=less<>>
BidiIt bsearch_le(BidiIt first, BidiIt last, const T& x, Comp comp={}) {
auto it = upper_bound(first, last, x, comp);
if(it == first) return last;
return prev(it);
}
// x より大きい最初の要素
template<typename BidiIt, typename T, typename Comp=less<>>
BidiIt bsearch_gt(BidiIt first, BidiIt last, const T& x, Comp comp={}) {
return upper_bound(first, last, x, comp);
}
// x 以上の最初の要素
template<typename BidiIt, typename T, typename Comp=less<>>
BidiIt bsearch_ge(BidiIt first, BidiIt last, const T& x, Comp comp={}) {
return lower_bound(first, last, x, comp);
}
template<typename InputIt, typename BinaryOp>
auto FOLD(InputIt first, InputIt last,
typename iterator_traits<InputIt>::value_type init,
BinaryOp op)
{
for(; first != last; ++first)
init = op(move(init), *first);
return init;
}
template<typename InputIt, typename BinaryOp>
auto FOLD1(InputIt first, InputIt last, BinaryOp op) {
auto init = *first++;
return FOLD(first, last, init, op);
}
template<typename InputIt>
auto SUM(InputIt first, InputIt last) {
using T = typename iterator_traits<InputIt>::value_type;
return accumulate(first, last, T());
}
template<typename ForwardIt, typename UnaryOperation>
ForwardIt transform_self(ForwardIt first, ForwardIt last, UnaryOperation op) {
return transform(first, last, first, op);
}
template<typename C>
void UNIQ(C& c) {
c.erase(ALL(unique,c), end(c));
}
template<typename BinaryFunc>
auto FLIP(BinaryFunc f) {
return [f](const auto& x, const auto& y) {
return f(y,x);
};
}
template<typename BinaryFunc, typename UnaryFunc>
auto ON(BinaryFunc bf, UnaryFunc uf) {
return [bf,uf](const auto& x, const auto& y) {
return bf(uf(x), uf(y));
};
}
template<typename F>
auto LT_ON(F f) { return ON(less<>(), f); }
template<typename F>
auto GT_ON(F f) { return ON(greater<>(), f); }
template<typename F>
auto EQ_ON(F f) { return ON(equal_to<>(), f); }
template<typename F>
auto NE_ON(F f) { return ON(not_equal_to<>(), f); }
template<typename Comp=less<>>
auto EQUIV(Comp comp={}) {
return [comp](const auto& lhs, const auto& rhs) {
return !comp(lhs,rhs) && !comp(rhs,lhs);
};
}
char digit_chr(i64 n) {
return static_cast<char>('0' + n);
}
i64 digit_ord(char c) {
return c - '0';
}
char lower_chr(i64 n) {
return static_cast<char>('a' + n);
}
i64 lower_ord(char c) {
return c - 'a';
}
char upper_chr(i64 n) {
return static_cast<char>('A' + n);
}
i64 upper_ord(char c) {
return c - 'A';
}
// 出力は operator<< を直接使わず、このテンプレート経由で行う
// 提出用出力とデバッグ用出力を分けるため
template<typename T, typename Enable=void>
struct Formatter {
static ostream& write_str(ostream& out, const T& x) { return out << x; }
static ostream& write_repr(ostream& out, const T& x) { return out << x; }
};
template<typename T>
ostream& WRITE_STR(ostream& out, const T& x) {
return Formatter<T>::write_str(out, x);
}
template<typename T>
ostream& WRITE_REPR(ostream& out, const T& x) {
return Formatter<T>::write_repr(out, x);
}
template<typename InputIt>
ostream& WRITE_JOIN_STR(ostream& out, InputIt first, InputIt last, const string& sep) {
while(first != last) {
WRITE_STR(out, *first++);
if(first != last)
out << sep;
}
return out;
}
template<typename InputIt>
ostream& WRITE_JOIN_REPR(ostream& out, InputIt first, InputIt last, const string& sep) {
while(first != last) {
WRITE_REPR(out, *first++);
if(first != last)
out << sep;
}
return out;
}
template<typename InputIt>
ostream& WRITE_RANGE_STR(ostream& out, InputIt first, InputIt last) {
return WRITE_JOIN_STR(out, first, last, " ");
}
template<typename InputIt>
ostream& WRITE_RANGE_REPR(ostream& out, InputIt first, InputIt last) {
out << "[";
WRITE_JOIN_REPR(out, first, last, ", ");
out << "]";
return out;
}
template<typename T>
string TO_STR(const T& x) {
ostringstream out;
WRITE_STR(out, x);
return out.str();
}
template<typename T>
string TO_REPR(const T& x) {
ostringstream out;
WRITE_REPR(out, x);
return out.str();
}
template<typename InputIt>
string RANGE_TO_STR(InputIt first, InputIt last) {
ostringstream out;
WRITE_RANGE_STR(out, first, last);
return out.str();
}
template<typename InputIt>
string RANGE_TO_REPR(InputIt first, InputIt last) {
ostringstream out;
WRITE_RANGE_REPR(out, first, last);
return out.str();
}
template<typename InputIt>
string JOIN(InputIt first, InputIt last, const string& sep) {
ostringstream out;
WRITE_JOIN_STR(out, first, last, sep);
return out.str();
}
template<>
struct Formatter<i64> {
static ostream& write_str(ostream& out, i64 x) {
return out << x;
}
static ostream& write_repr(ostream& out, i64 x) {
if(x == INF) return out << "INF";
if(x == -INF) return out << "-INF";
return out << x;
}
};
template<>
struct Formatter<f64> {
static ostream& write_str(ostream& out, f64 x) {
return out << x;
}
static ostream& write_repr(ostream& out, f64 x) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
if(x == FINF) return out << "FINF";
if(x == -FINF) return out << "-FINF";
#pragma GCC diagnostic pop
return out << x;
}
};
template<typename Enum>
struct Formatter<Enum, enable_if_t<is_enum<Enum>::value>> {
static ostream& write_str(ostream& out, Enum x) {
return WRITE_STR(out, static_cast<underlying_type_t<Enum>>(x));
}
static ostream& write_repr(ostream& out, Enum x) {
return WRITE_REPR(out, static_cast<underlying_type_t<Enum>>(x));
}
};
template<typename T>
struct Formatter<vector<T>> {
static ostream& write_str(ostream& out, const vector<T>& v) {
return WRITE_RANGE_STR(out, begin(v), end(v));
}
static ostream& write_repr(ostream& out, const vector<T>& v) {
out << "vector";
return WRITE_RANGE_REPR(out, begin(v), end(v));
}
};
template<>
struct Formatter<vector<string>> {
static ostream& write_str(ostream& out, const vector<string>& v) {
for(const auto& row : v) {
WRITE_STR(out, row);
out << "\n";
}
return out;
}
static ostream& write_repr(ostream& out, const vector<string>& v) {
out << "\n";
for(const auto& row : v) {
WRITE_STR(out, row);
out << "\n";
}
return out;
}
};
template<>
struct Formatter<BoolArray> {
static ostream& write_str(ostream& out, const BoolArray& a) {
return WRITE_RANGE_STR(out, begin(a), end(a));
}
static ostream& write_repr(ostream& out, const BoolArray& a) {
out << "BoolArray";
return WRITE_RANGE_REPR(out, begin(a), end(a));
}
};
template<typename T1, typename T2>
struct Formatter<pair<T1,T2>> {
static ostream& write_str(ostream& out, const pair<T1,T2>& p) {
WRITE_STR(out, p.first);
out << ' ';
WRITE_STR(out, p.second);
return out;
}
static ostream& write_repr(ostream& out, const pair<T1,T2>& p) {
out << "(";
WRITE_REPR(out, p.first);
out << ",";
WRITE_REPR(out, p.second);
out << ")";
return out;
}
};
template<typename... TS>
struct Formatter<tuple<TS...>> {
static ostream& write_str(ostream& out, const tuple<TS...>& t) {
tuple_enumerate(t, [&out](i64 i, const auto& e) {
if(i != 0) out << ' ';
WRITE_STR(out, e);
});
return out;
}
static ostream& write_repr(ostream& out, const tuple<TS...>& t) {
out << "(";
tuple_enumerate(t, [&out](i64 i, const auto& e) {
if(i != 0) out << ",";
WRITE_REPR(out, e);
});
out << ")";
return out;
}
};
template<typename T, typename Enable=void>
struct Scanner {
static_assert(!is_same<T,bool>::value, "Scanner<bool> is not supported");
static T read(istream& in) {
T res;
in >> res;
return res;
}
};
template<typename T>
struct Scanner<T, enable_if_t<is_integral<T>::value && !is_same<T,bool>::value>> {
static T read(istream& in) {
T res;
in >> res;
return res;
}
static T read1(istream& in) {
return read(in) - 1;
}
};
template<typename T>
T READ(istream& in) {
return Scanner<T>::read(in);
}
template<typename T>
T READ1(istream& in) {
return Scanner<T>::read1(in);
}
template<typename T>
T FROM_STR(const string& s) {
istringstream in(s);
return READ<T>(in);
}
template<typename T=i64>
T RD() {
T res = READ<T>(cin);
#ifdef PROCON_LOCAL
ASSERT(cin);
#endif
return res;
}
template<typename T=i64>
T RD1() {
T res = READ1<T>(cin);
#ifdef PROCON_LOCAL
ASSERT(cin);
#endif
return res;
}
template<typename T=i64>
auto RD_ARRAY(i64 n) {
vector<T> res;
res.reserve(n);
REP(_, n) {
res.emplace_back(RD<T>());
}
return res;
}
template<typename T=i64>
auto RD1_ARRAY(i64 n) {
vector<T> res;
res.reserve(n);
REP(_, n) {
res.emplace_back(RD1<T>());
}
return res;
}
template<typename T=i64>
auto RD_ARRAY2(i64 h, i64 w) {
vector<vector<T>> res(h);
for(auto& row : res) {
row.reserve(w);
REP(_, w) {
row.emplace_back(RD<T>());
}
}
return res;
}
template<typename T=i64>
auto RD1_ARRAY2(i64 h, i64 w) {
vector<vector<T>> res(h);
for(auto& row : res) {
row.reserve(w);
REP(_, w) {
row.emplace_back(RD1<T>());
}
}
return res;
}
template<typename T1, typename T2>
struct Scanner<pair<T1,T2>> {
static pair<T1,T2> read(istream& in) {
T1 x = READ<T1>(in);
T2 y = READ<T2>(in);
return {x,y};
}
};
template<typename... TS>
struct Scanner<tuple<TS...>> {
template<i64 I, SFINAE(sizeof...(TS) == I)>
static auto read_impl(istream&) {
return make_tuple();
}
template<i64 I, SFINAE(sizeof...(TS) > I)>
static auto read_impl(istream& in) {
using T = tuple_element_t<I,tuple<TS...>>;
auto head = make_tuple(READ<T>(in));
return tuple_cat(head, read_impl<I+1>(in));
}
static tuple<TS...> read(istream& in) {
return read_impl<0>(in);
}
};
void PRINT() {}
template<typename T, typename... TS>
void PRINT(const T& x, const TS& ...args) {
WRITE_STR(cout, x);
if(sizeof...(args)) {
cout << ' ';
PRINT(args...);
}
}
template<typename... TS>
void PRINTLN(const TS& ...args) {
PRINT(args...);
cout << '\n';
}
[[noreturn]] void EXIT() {
cout.flush();
#ifdef PROCON_LOCAL
cerr.flush();
exit(0);
#else
_Exit(0);
#endif
}
// hash {{{
u64 splitmix64(u64 x) noexcept {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
u64 RANDOM_SEED() noexcept {
int dummy;
static const u64 res =
splitmix64(chrono::high_resolution_clock::now().time_since_epoch().count()) +
splitmix64(reinterpret_cast<u64>(&dummy)) +
splitmix64(reinterpret_cast<u64>(new char));
return res;
}
template<typename T, typename Enable=void>
struct procon_hash {
static_assert(!is_pointer<T>::value, "procon_hash<T*> is not supported");
static_assert(!is_floating_point<T>::value, "procon_hash<Real> is not supported");
size_t operator()(const T& x) const noexcept {
return hash<T>{}(x);
}
};
template<typename T>
size_t procon_hash_value(const T& x) noexcept {
return procon_hash<T>{}(x);
}
template<typename InputIt>
size_t procon_hash_range(InputIt first, InputIt last) noexcept {
size_t res = 0;
for(; first != last; ++first) {
res *= 2;
res += procon_hash_value(*first);
}
return res;
}
template<typename T>
struct procon_hash<T,enable_if_t<is_integral<T>::value>> {
size_t operator()(T x) const noexcept {
return splitmix64(x + RANDOM_SEED());
}
};
template<>
struct procon_hash<string> {
static size_t BASE() noexcept {
return 14695981039346656037ULL + RANDOM_SEED();
}
size_t operator()(const string& s) const noexcept {
static constexpr size_t P = 1099511628211ULL;
size_t res = BASE();
for(char c : s) {
res ^= c;
res *= P;
}
return res;
}
};
template<typename T1, typename T2>
struct procon_hash<pair<T1,T2>> {
size_t operator()(const pair<T1,T2>& p) const noexcept {
size_t h1 = procon_hash_value(FST(p));
size_t h2 = procon_hash_value(SND(p));
return 2*h1 + h2;
}
};
template<typename... TS>
struct procon_hash<tuple<TS...>> {
size_t operator()(const tuple<TS...>& t) const noexcept {
size_t res = 0;
tuple_enumerate(t, [&res](i64, const auto& e) noexcept {
res *= 2;
res += procon_hash_value(e);
});
return res;
}
};
template<typename T>
struct procon_hash<vector<T>> {
size_t operator()(const vector<T>& v) const noexcept {
return ALL(procon_hash_range, v);
}
};
template<typename T, typename Hash=procon_hash<T>, typename Eq=equal_to<T>>
using HashSet = unordered_set<T,Hash,Eq>;
template<typename K, typename V, typename Hash=procon_hash<K>, typename Eq=equal_to<K>>
using HashMap = unordered_map<K,V,Hash,Eq>;
template<typename T, typename Hash=procon_hash<T>, typename Eq=equal_to<T>>
using HashMultiset = unordered_multiset<T,Hash,Eq>;
template<typename K, typename V, typename Hash=procon_hash<K>, typename Eq=equal_to<K>>
using HashMultimap = unordered_multimap<K,V,Hash,Eq>;
template<typename T, typename Hash=procon_hash<T>, typename Eq=equal_to<T>>
auto make_hash_set(i64 cap, f32 load_max=0.25) {
HashSet<T,Hash,Eq> res;
res.max_load_factor(load_max);
res.reserve(cap);
return res;
}
template<typename K, typename V, typename Hash=procon_hash<K>, typename Eq=equal_to<K>>
auto make_hash_map(i64 cap, f32 load_max=0.25) {
HashMap<K,V,Hash,Eq> res;
res.max_load_factor(load_max);
res.reserve(cap);
return res;
}
template<typename T, typename Hash=procon_hash<T>, typename Eq=equal_to<T>>
auto make_hash_multiset(i64 cap, f32 load_max=0.25) {
HashMultiset<T,Hash,Eq> res;
res.max_load_factor(load_max);
res.reserve(cap);
return res;
}
template<typename K, typename V, typename Hash=procon_hash<K>, typename Eq=equal_to<K>>
auto make_hash_multimap(i64 cap, f32 load_max=0.25) {
HashMultimap<K,V,Hash,Eq> res;
res.max_load_factor(load_max);
res.reserve(cap);
return res;
}
// }}}
// stack/queue/priority_queue {{{
template<typename T>
using MaxHeap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using MinHeap = priority_queue<T, vector<T>, greater<T>>;
template<typename T, typename C>
T POP(stack<T,C>& stk) {
T x = stk.top(); stk.pop();
return x;
}
template<typename T, typename C>
T POP(queue<T,C>& que) {
T x = que.front(); que.pop();
return x;
}
template<typename T, typename C, typename Comp>
T POP(priority_queue<T,C,Comp>& que) {
T x = que.top(); que.pop();
return x;
}
// }}}
// debug {{{
template<typename... TS, SFINAE(sizeof...(TS) == 1)>
void DBG_IMPL(i64 line, const char* expr, const tuple<TS...>& value) {
cerr << "[L " << line << "]: ";
cerr << expr << " = ";
WRITE_REPR(cerr, get<0>(value));
cerr << "\n";
}
template<typename... TS, SFINAE(sizeof...(TS) >= 2)>
void DBG_IMPL(i64 line, const char* expr, const tuple<TS...>& value) {
cerr << "[L " << line << "]: ";
cerr << "(" << expr << ") = ";
WRITE_REPR(cerr, value);
cerr << "\n";
}
template<typename T, size_t N>
void DBG_CARRAY_IMPL(i64 line, const char* expr, const T (&ary)[N]) {
cerr << "[L " << line << "]: ";
cerr << expr << " = ";
WRITE_RANGE_REPR(cerr, begin(ary), end(ary));
cerr << "\n";
}
template<typename InputIt>
void DBG_RANGE_IMPL(i64 line, const char* expr1, const char* expr2, InputIt first, InputIt last) {
cerr << "[L " << line << "]: ";
cerr << expr1 << "," << expr2 << " = ";
WRITE_RANGE_REPR(cerr, first, last);
cerr << "\n";
}
#ifdef PROCON_LOCAL
#define DBG(args...) DBG_IMPL(__LINE__, CPP_STR_I(args), std::make_tuple(args))
#define DBG_CARRAY(expr) DBG_CARRAY_IMPL(__LINE__, CPP_STR(expr), (expr))
#define DBG_RANGE(first,last) DBG_RANGE_IMPL(__LINE__, CPP_STR(first), CPP_STR(last), (first), (last))
#else
#define DBG(args...)
#define DBG_CARRAY(expr)
#define DBG_RANGE(first,last)
#endif
// }}}
#define PAIR make_pair
#define TUPLE make_tuple
// }}}
// init {{{
struct ProconInit {
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
ProconInit() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(IOS_PREC);
#ifdef PROCON_LOCAL
cerr << fixed << setprecision(IOS_PREC);
#endif
if(AUTOFLUSH)
cout << unitbuf;
}
} PROCON_INIT;
// }}}
// graph {{{
template<typename T>
vector<vector<pair<i64,T>>> graph_make_weighted(i64 n) {
return vector<vector<pair<i64,T>>>(n);
}
vector<vector<i64>> graph_make_unweighted(i64 n) {
return vector<vector<i64>>(n);
}
// n 頂点の初期化済み隣接行列 g を返す
//
// g[i][j]: i==j なら 0, i!=j なら INF
template<typename T>
vector<vector<T>> graph_make_matrix(i64 n) {
vector<vector<T>> g(n, vector<T>(n, PROCON_INF<T>()));
REP(i, n) {
g[i][i] = T(0);
}
return g;
}
// 辺のリストから n 頂点無向グラフの隣接リスト表現を得る
vector<vector<i64>> graph_from_edges(i64 n, const vector<pair<i64,i64>>& es) {
vector<vector<i64>> g(n);
for(const auto& e : es) {
i64 s,t; tie(s,t) = e;
g[s].emplace_back(t);
g[t].emplace_back(s);
}
return g;
}
// 単純無向グラフが木かどうか判定する
//
// g: 隣接リスト表現(頂点数 n > 0)
bool graph_is_tree(const vector<vector<i64>>& g) {
i64 n = SIZE(g);
ASSERT(n > 0);
i64 edge_cnt = 0;
BoolArray visited(n, false);
auto dfs = FIX([&g,&edge_cnt,&visited](auto&& self, i64 v) -> void {
visited[v] = true;
for(i64 to : g[v]) {
if(visited[to]) continue;
++edge_cnt;
self(to);
}
});
dfs(0);
bool connected = ALL(all_of, visited, IDENTITY());
return edge_cnt == n-1 && connected;
}
// ダイクストラ法
//
// (d,parent) を返す
// d[i]: start から点 i への最短距離(到達不能な点は INF)
// parent[i]: 最短経路木における点 i の親(start および到達不能な点は -1)
template<typename T>
tuple<vector<T>,vector<i64>> graph_dijkstra(const vector<vector<pair<i64,T>>>& g, i64 start) {
i64 n = SIZE(g);
vector<T> d(n, PROCON_INF<T>());
vector<i64> parent(n, -1);
MinHeap<pair<T,i64>> que;
d[start] = T(0);
que.emplace(T(0), start);
i64 n_remain = n;
while(!que.empty()) {
i64 dmin,vmin; tie(dmin,vmin) = POP(que);
if(d[vmin] < dmin) continue;
if(--n_remain == 0) break;
for(const auto& p : g[vmin]) {
i64 to,cost; tie(to,cost) = p;
i64 d_new = dmin + cost;
if(d_new < d[to]) {
d[to] = d_new;
parent[to] = vmin;
que.emplace(d_new, to);
}
}
}
return make_tuple(d, parent);
}
// 辺のコストが非負かつ小さい場合の最良優先探索(01-BFS の一般化)
// 全ての辺のコストは [0,k] であること
//
// (d,parent) を返す
// d[i]: start から点 i への最短距離(到達不能な点は INF)
// parent[i]: 最短経路木における点 i の親(start および到達不能な点は -1)
template<typename T>
tuple<vector<T>,vector<i64>> graph_k_bfs(const vector<vector<pair<i64,T>>>& g, i64 k, i64 start) {
i64 n = SIZE(g);
vector<T> d(n, PROCON_INF<T>());
vector<i64> parent(n, -1);
vector<queue<i64>> ques(k+1);
auto enqueue = [&ques](i64 to, i64 cost) {
ques[cost].emplace(to);
};
auto dequeue = [&ques]() -> i64 {
for(auto& que : ques)
if(!que.empty())
return POP(que);
return -1;
};
enqueue(start, 0);
d[start] = 0;
i64 v;
while((v = dequeue()) != -1) {
for(const auto& p : g[v]) {
i64 to,cost; tie(to,cost) = p;
i64 d_new = d[v] + cost;
if(d_new < d[to]) {
d[to] = d_new;
parent[to] = v;
enqueue(to, cost);
}
}
}
return make_tuple(d, parent);
}
// ベルマンフォード法
//
// 負閉路が存在する場合、最短距離が負の無限大になる点が生じる。
// そのような点を全て検出するため、2*n 回ループしている
// (一般的な実装の倍の回数。ただし更新がなくなったら打ち切る)
//
// (d,parent) を返す
// d[i]: start から点 i への最短距離(到達不能なら INF, 負の無限大なら -INF)
// parent[i]: 最短経路木における点 i の親(start および到達不能な点は -1)
template<typename T>
tuple<vector<T>,vector<i64>> graph_bellman(const vector<vector<pair<i64,T>>>& g, i64 start) {
i64 n = SIZE(g);
vector<T> d(n, PROCON_INF<T>());
vector<i64> parent(n, -1);
d[start] = T(0);
REP(i, 2*n) {
bool update = false;
REP(from, n) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
if(d[from] == PROCON_INF<T>()) continue;
for(const auto& p : g[from]) {
i64 to,cost; tie(to,cost) = p;
i64 d_new = d[from] == -PROCON_INF<T>() ? -PROCON_INF<T>() : d[from] + cost;
if(d_new < d[to]) {
update = true;
d[to] = i >= n-1 ? -PROCON_INF<T>() : d_new;
parent[to] = from;
}
}
#pragma GCC diagnostic pop
}
if(!update) break;
}
return make_tuple(d, parent);
}
// SPFA (Shortest Path Faster Algorithm)
//
// 理論上はベルマンフォードより速いはずだが、実際はそうでもなさげ
// 最短距離が負の無限大になる点を全て検出するため 2*n 回ループしている
// (一般的な実装の倍の回数。ただし更新がなくなったら打ち切る)
//
// (d,parent) を返す
// d[i]: start から点 i への最短距離(到達不能なら INF, 負の無限大なら -INF)
// parent[i]: 最短経路木における点 i の親(start および到達不能な点は -1)
template<typename T>
tuple<vector<T>,vector<i64>> graph_spfa(const vector<vector<pair<i64,T>>>& g, i64 start) {
i64 n = SIZE(g);
vector<T> d(n, PROCON_INF<T>());
vector<i64> parent(n, -1);
queue<i64> que;
BoolArray in_que(n, false);
const auto enqueue = [&que,&in_que](i64 v) { que.emplace(v); in_que[v] = true; };
const auto dequeue = [&que,&in_que]() { i64 v = POP(que); in_que[v] = false; return v; };
d[start] = T(0);
enqueue(start);
REP(i, 2*n) {
REP(_, que.size()) {
i64 from = dequeue();
for(const auto& p : g[from]) {
i64 to,cost; tie(to,cost) = p;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
i64 d_new = d[from] == -PROCON_INF<T>() ? -PROCON_INF<T>() : d[from] + cost;
if(d_new < d[to]) {
d[to] = i >= n-1 ? -PROCON_INF<T>() : d_new;
parent[to] = from;
if(!in_que[to]) enqueue(to);
}
#pragma GCC diagnostic pop
}
}
if(que.empty()) break;
}
return make_tuple(d, parent);
}
// ワーシャルフロイド法
//
// g は隣接行列 (g[from][to]) で、from == to の場合 0, from != to で辺
// がない場合 INF
//
// g は全点対間最短距離で上書きされる
// (ok,nex) を返す
// ok: 負閉路が存在しない場合に限り true
// nex[i][j]: i から j へ最短経路で行くとき、次に辿るべき点(到達不能なら -1)
template<typename T>
tuple<bool,vector<vector<i64>>> graph_floyd(vector<vector<T>>& g) {
i64 n = SIZE(g);
vector<vector<i64>> nex(n, vector<i64>(n,-1));
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
REP(i, n) REP(j, n) {
if(g[i][j] != PROCON_INF<T>())
nex[i][j] = j;
}
REP(k, n) {
REP(i, n) {
if(g[i][k] == PROCON_INF<T>()) continue;
REP(j, n) {
if(g[k][j] == PROCON_INF<T>()) continue;
if(chmin(g[i][j], g[i][k] + g[k][j])) {
nex[i][j] = nex[i][k];
}
if(i == j && g[i][j] < 0) return make_tuple(false, nex);
}
}
}
#pragma GCC diagnostic pop
return make_tuple(true, nex);
}
// TODO: 重みあり/なし両対応
// トポロジカルソート
// queue を MinHeap に変えると辞書順最小のものが求まる
//
// (ok,res) を返す
// ok: DAGであったかどうか
// res: 結果
tuple<bool,vector<i64>> graph_tsort(const vector<vector<i64>>& g) {
i64 n = SIZE(g);
vector<i64> res;
res.reserve(n);
vector<i64> deg_in(n, 0);
for(const auto& tos : g)
for(auto to : tos)
++deg_in[to];
queue<i64> que;
REP(v, n) {
if(deg_in[v] == 0)
que.emplace(v);
}
while(!que.empty()) {
i64 v = POP(que);
res.emplace_back(v);
for(auto to : g[v]) {
if(--deg_in[to] > 0) continue;
que.emplace(to);
}
}
bool ok = SIZE(res) == n;
return make_tuple(ok, res);
}
// TODO: 重みあり/なし両対応
// (関節点リスト,橋リスト) を返す
tuple<vector<i64>,vector<pair<i64,i64>>> graph_lowlink(const vector<vector<i64>>& g) {
i64 n = SIZE(g);
vector<i64> ord(n, -1);
vector<i64> low(n, -1);
vector<i64> articulations;
vector<pair<i64,i64>> bridges;
auto dfs = FIX([&g,&ord,&low,&articulations,&bridges](auto&& self, i64 v, i64 parent, i64 k) -> void {
low[v] = ord[v] = k;
bool arti = false;
i64 n_child = 0;
for(i64 to : g[v]) {
// 親または後退辺
if(ord[to] != -1) {
if(to != parent)
chmin(low[v], ord[to]);
continue;
}
// 子を辿り、low[v] を更新
++n_child;
self(to, v, k+1);
chmin(low[v], low[to]);
// 関節点判定(根でない場合)
if(parent != -1 && low[to] >= ord[v])
arti = true;
// 橋判定
if(low[to] > ord[v])
bridges.emplace_back(minmax(v,to));
}
// 関節点判定(根の場合)
if(parent == -1 && n_child > 1)
arti = true;
if(arti)
articulations.emplace_back(v);
});
dfs(0, -1, 0);
return make_tuple(articulations, bridges);
}
// 各頂点の (indegree,outdegree) のリストを返す (隣接リスト版)
vector<pair<i64,i64>> graph_degrees_list(const vector<vector<i64>>& g) {
i64 n = SIZE(g);
vector<pair<i64,i64>> res(n, {0,0});
REP(from, n) {
for(i64 to : g[from]) {
++SND(res[from]);
++FST(res[to]);
}
}
return res;
}
// 各頂点の (indegree,outdegree) のリストを返す (隣接行列版)
vector<pair<i64,i64>> graph_degrees_matrix(const vector<vector<i64>>& g) {
i64 n = SIZE(g);
vector<pair<i64,i64>> res(n, {0,0});
REP(from, n) REP(to, n) {
i64 k = g[from][to];
SND(res[from]) += k;
FST(res[to]) += k;
}
return res;
}
// グラフのオイラー路 (隣接リスト版)
//
// g は破壊される
// start: 始点
// digraph: 有向グラフか?
vector<i64> graph_euler_trail_list(vector<vector<i64>>& g, i64 start, bool digraph) {
// スタックオーバーフロー回避のため再帰を使わず自前の stack で処理
enum Action { CALL, RESUME };
vector<i64> res;
stack<tuple<Action,i64>> stk;
stk.emplace(CALL, start);
while(!stk.empty()) {
Action act; i64 v; tie(act,v) = POP(stk);
switch(act) {
case CALL:
stk.emplace(RESUME, v);
while(!g[v].empty()) {
i64 to = g[v].back(); g[v].pop_back();
if(!digraph)
g[to].erase(ALL(find, g[to], v));
stk.emplace(CALL, to);
}
break;
case RESUME:
res.emplace_back(v);
break;
default: ASSERT(false);
}
}
ALL(reverse, res);
return res;
}
// 無向グラフのオイラー路 (隣接行列版)
//
// g[v][w]: v,w 間の辺の本数 (破壊される)
// start: 始点
// digraph: 有向グラフか?
vector<i64> graph_euler_trail_matrix(vector<vector<i64>>& g, i64 start, bool digraph) {
// スタックオーバーフロー回避のため再帰を使わず自前の stack で処理
enum Action { CALL, RESUME };
i64 n = SIZE(g);
vector<i64> res;
stack<tuple<Action,i64>> stk;
stk.emplace(CALL, start);
while(!stk.empty()) {
Action act; i64 v; tie(act,v) = POP(stk);
switch(act) {
case CALL:
stk.emplace(RESUME, v);
REP(to, n) {
if(g[v][to] == 0) continue;
--g[v][to];
if(!digraph)
--g[to][v];
stk.emplace(CALL, to);
}
break;
case RESUME:
res.emplace_back(v);
break;
default: ASSERT(false);
}
}
ALL(reverse, res);
return res;
}
// }}}
//--------------------------------------------------------------------
void solve() {
i64 N = RD();
i64 M = RD();
auto vert = [](i64 v, i64 k) {
return 2*v + k;
};
auto G = graph_make_weighted<i64>(2*N);
REP(_, M) {
i64 a = RD1();
i64 b = RD1();
i64 c = RD();
G[vert(a,0)].emplace_back(vert(b,0), c);
G[vert(b,0)].emplace_back(vert(a,0), c);
G[vert(a,1)].emplace_back(vert(b,1), c);
G[vert(b,1)].emplace_back(vert(a,1), c);
G[vert(a,0)].emplace_back(vert(b,1), 0);
G[vert(b,0)].emplace_back(vert(a,1), 0);
}
vector<i64> d1, d2;
tie(d1,ignore) = graph_dijkstra(G, vert(0,0));
tie(d2,ignore) = graph_dijkstra(G, vert(0,1));
REP(v, N) {
if(v == 0) {
PRINTLN(0);
continue;
}
i64 ans = INF;
chmin(ans, d1[vert(v,0)] + d2[vert(v,0)]);
chmin(ans, d1[vert(v,1)] + d2[vert(v,1)]);
PRINTLN(ans);
}
// * 小さいケースで試した?
// * 不可能なケースはチェックした?
// * MOD はとった?
// * メモ化忘れてない?
// * 入出力の 0-based/1-based 確認した?
// * 時間/メモリ制限は確認した?
// * 違うやつ提出してない?
// * 違うやつテストしてない?
}
signed main() {
solve();
EXIT();
}