結果
問題 | No.807 umg tours |
ユーザー | taotao54321 |
提出日時 | 2019-06-30 22:55:21 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 394 ms / 4,000 ms |
コード長 | 63,979 bytes |
コンパイル時間 | 4,270 ms |
コンパイル使用メモリ | 246,744 KB |
実行使用メモリ | 44,884 KB |
最終ジャッジ日時 | 2024-07-07 03:35:59 |
合計ジャッジ時間 | 10,995 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 202 ms
32,808 KB |
testcase_12 | AC | 206 ms
28,156 KB |
testcase_13 | AC | 288 ms
37,532 KB |
testcase_14 | AC | 106 ms
18,192 KB |
testcase_15 | AC | 82 ms
15,748 KB |
testcase_16 | AC | 315 ms
39,568 KB |
testcase_17 | AC | 394 ms
44,548 KB |
testcase_18 | AC | 387 ms
44,884 KB |
testcase_19 | AC | 374 ms
44,880 KB |
testcase_20 | AC | 205 ms
28,236 KB |
testcase_21 | AC | 211 ms
29,100 KB |
testcase_22 | AC | 75 ms
14,580 KB |
testcase_23 | AC | 57 ms
12,152 KB |
testcase_24 | AC | 142 ms
35,644 KB |
testcase_25 | AC | 388 ms
44,812 KB |
ソースコード
/** * */ //#define NDEBUG //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") // atcoder //#pragma GCC target("arch=ivybridge,tune=ivybridge") // header {{{ #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/hash_policy.hpp> #include <ext/pb_ds/priority_queue.hpp> #include <ext/pb_ds/tag_and_trait.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; namespace pbds = __gnu_pbds; // C++20 polyfill {{{ struct IDENTITY { using is_transparent = void; template<typename T> constexpr T&& operator()(T&& x) const noexcept { return forward<T>(x); } }; // }}} #define CPP_STR(x) CPP_STR_I(x) #define CPP_CAT(x,y) CPP_CAT_I(x,y) #define CPP_STR_I(args...) #args #define CPP_CAT_I(x,y) x ## y #define SFINAE(pred...) std::enable_if_t<(pred), std::nullptr_t> = nullptr #define ASSERT(expr...) assert((expr)) using i8 = int8_t; using u8 = uint8_t; using i16 = int16_t; using u16 = uint16_t; using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; #ifdef __SIZEOF_INT128__ using i128 = __int128; using u128 = unsigned __int128; #endif using f32 = float; using f64 = double; using f80 = __float80; using f128 = __float128; using complex32 = complex<f32>; using complex64 = complex<f64>; using complex80 = complex<f80>; // }}} template<typename T> constexpr T PROCON_INF(); template<> constexpr i64 PROCON_INF<i64>() { return 1'010'000'000'000'000'017LL; } template<> constexpr f64 PROCON_INF<f64>() { return 1e100; } constexpr i64 INF = PROCON_INF<i64>(); constexpr f64 FINF = PROCON_INF<f64>(); constexpr i64 MOD = 1'000'000'007LL; constexpr f64 EPS = 1e-12; constexpr f64 PI = 3.14159265358979323846; // util {{{ #define FOR(i, start, end) for(i64 i = (start), CPP_CAT(i,xxxx_end)=(end); i < CPP_CAT(i,xxxx_end); ++i) #define REP(i, n) FOR(i, 0, n) #define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(std::begin(cccc), std::end(cccc), ## __VA_ARGS__); })(c)) #define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\ auto iiii = llll <= rrrr ? std::begin(cccc)+llll : std::end(cccc);\ auto jjjj = llll <= rrrr ? std::begin(cccc)+rrrr : std::end(cccc);\ return (f)(iiii, jjjj, ## __VA_ARGS__);\ })(c,l,r)) #define GENERIC(f) ([](auto&&... args) -> decltype(auto) { return (f)(std::forward<decltype(args)>(args)...); }) // ビット演算 {{{ // 引数は [-INF,INF] のみ想定 i64 BIT_I(i64 i) { return 1LL << i; } i64 BIT_I_1(i64 i) { return BIT_I(i) - 1; } i64 BIT_GET(i64 x, i64 i) { return x & BIT_I(i); } bool BIT_TEST(i64 x, i64 i) { return BIT_GET(x,i) != 0; } i64 BIT_SET(i64 x, i64 i) { return x | BIT_I(i); } i64 BIT_CLEAR(i64 x, i64 i) { return x & ~BIT_I(i); } i64 BIT_FLIP(i64 x, i64 i) { return x ^ BIT_I(i); } i64 BIT_ASSIGN(i64 x, i64 i, bool b) { return b ? BIT_SET(x,i) : BIT_CLEAR(x,i); } i64 BIT_COUNT_LEADING_ZEROS(i64 x) { if(x == 0) return 64; return __builtin_clzll(x); } i64 BIT_COUNT_LEADING_ONES(i64 x) { return BIT_COUNT_LEADING_ZEROS(~x); } i64 BIT_COUNT_TRAILING_ZEROS(i64 x) { if(x == 0) return 64; return __builtin_ctzll(x); } i64 BIT_COUNT_TRAILING_ONES(i64 x) { return BIT_COUNT_TRAILING_ZEROS(~x); } // 末尾へ続く0を識別するマスクを返す (ex. 0b10100 -> 0b00011) // x=0 なら -1 を返す i64 BIT_MASK_TRAILING_ZEROS(i64 x) { return ~x & (x-1); } // 末尾へ続く1を識別するマスクを返す (ex. 0b10011 -> 0b00011) // x=-1 なら -1 を返す i64 BIT_MASK_TRAILING_ONES(i64 x) { return x & ~(x+1); } i64 BIT_COUNT_ONES(i64 x) { return __builtin_popcountll(x); } i64 BIT_COUNT_ZEROS(i64 x) { return 64 - BIT_COUNT_ONES(x); } // 先頭から続く冗長な符号ビットを数える (ex. 1 -> 62, -1 -> 63) i64 BIT_COUNT_LEADING_REDUNDANT_SIGN_BITS(i64 x) { return __builtin_clrsbll(x); } // 1の個数が奇数なら1, 偶数なら0を返す i64 BIT_PARITY(i64 x) { return __builtin_parityll(x); } // 最右の0を分離する (ex. 0b11001 -> 0b00010) // x=-1 なら 0 を返す i64 BIT_EXTRACT_FIRST_ZERO(i64 x) { return ~x & (x+1); } // 最右の1を分離する (ex. 0b10110 -> 0b00010) // x=0 なら 0 を返す i64 BIT_EXTRACT_FIRST_ONE(i64 x) { return x & (-x); } // 最右の0を1にする (ex. 0b11001 -> 0b11011) i64 BIT_FLIP_FIRST_ZERO(i64 x) { return x | (x+1); } // 最右の1を0にする (ex. 0b10110 -> 0b10100) i64 BIT_FLIP_FIRST_ONE(i64 x) { return x & (x-1); } // 最右の1の位置(1-based)を得る // x=0 なら 0 を返す i64 BIT_FIND_FIRST_ONE(i64 x) { return __builtin_ffsll(x); } // 最右の0の位置(1-based)を得る // x=-1 なら 0 を返す i64 BIT_FIND_FIRST_ZERO(i64 x) { return BIT_FIND_FIRST_ONE(~x); } // 最右の0をそれより右に伝播する (ex. 0b11011 -> 0b11000) // x=-1 なら -1 を返す i64 BIT_PROPAGATE_FIRST_ZERO(i64 x) { if(x == -1) return -1; return x & (x+1); } // 最右の1をそれより右に伝播する (ex. 0b10100 -> 0b10111) // x=0 なら 0 を返す i64 BIT_PROPAGATE_FIRST_ONE(i64 x) { if(x == 0) return 0; return x | (x-1); } // 最右の0および末尾へ続く1を識別するマスクを返す (ex. 0b11011 -> 0b00111) // x=-1 なら 0 を返す i64 BIT_MASKTO_FIRST_ZERO(i64 x) { if(x == -1) return 0; return x ^ (x+1); } // 最右の1および末尾へ続く0を識別するマスクを返す (ex. 0b10100 -> 0b00111) // x=0 なら 0 を返す i64 BIT_MASKTO_FIRST_ONE(i64 x) { if(x == 0) return 0; return x ^ (x-1); } // 最右の連続した0を1にする (ex. 0b101001 -> 0b101111) // x=-1 なら -1 を返す i64 BIT_FLIP_FIRST_ZEROS(i64 x) { return ((x&(x+1))-1) | x; } // 最右の連続した1を0にする (ex. 0b10110 -> 0b10000) // x=0 なら 0 を返す i64 BIT_FLIP_FIRST_ONES(i64 x) { return ((x|(x-1))+1) & x; } // X ⊆ {0,1,...,n-1}, |X| = k なる部分集合 X を昇順に列挙する // comb(n,k) 個 // // ex. // ``` // i64 x = BIT_I_1(3); // do { // // ... // } while(BIT_NEXT_SET_SIZED(x, 10)); // ``` bool BIT_NEXT_SET_SIZED(i64& x, i64 n) { if(x == 0) return false; i64 t = BIT_PROPAGATE_FIRST_ONE(x) + 1; x = t | (BIT_MASK_TRAILING_ZEROS(t) >> (BIT_COUNT_TRAILING_ZEROS(x)+1)); return x < BIT_I(n); } // 集合 Y の部分集合 X を昇順に列挙する // 2^|Y| 個 // // ex. // ``` // i64 y = 0b10101; // i64 x = 0; // do { // // ... // } while(BIT_NEXT_SUBSET(x, y)); // ``` bool BIT_NEXT_SUBSET(i64& x, i64 y) { if(x == y) return false; x = (x-y) & y; return true; } // 集合 Y の部分集合 X を降順に列挙する // 2^|Y| 個 // // ex. // ``` // i64 y = 0b10101; // i64 x = y; // do { // // ... // } while(BIT_PREV_SUBSET(x, y)); // ``` bool BIT_PREV_SUBSET(i64& x, i64 y) { if(x == 0) return false; x = (x-1) & y; return true; } // 集合 Y を包含する集合 X ⊆ {0,1,...,n-1} を昇順に列挙する // 2^(n-|Y|) 個 // // ex. // ``` // i64 y = 0b00010101; // i64 x = y; // do { // // ... // } while(BIT_NEXT_SUPERSET(x, 8, y)); // ``` bool BIT_NEXT_SUPERSET(i64& x, i64 n, i64 y) { x = (x+1) | y; return x < BIT_I(n); } // }}} // BoolArray {{{ class BoolArray { public: using value_type = bool; using reference = value_type&; using const_reference = const value_type&; using iterator = value_type*; using const_iterator = const value_type*; using difference_type = ptrdiff_t; using size_type = size_t; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; BoolArray() : BoolArray(0) {} explicit BoolArray(size_t n) : BoolArray(n,false) {} BoolArray(size_t n, bool value) : size_(n), data_(new bool[n]) { ALL(fill, *this, value); } BoolArray(initializer_list<bool> init) : size_(init.size()), data_(new bool[size_]) { ALL(copy, init, begin()); } template<typename InputIt> BoolArray(InputIt first, InputIt last) { deque<bool> tmp(first, last); size_ = tmp.size(); data_ = new bool[size_]; ALL(copy, tmp, begin()); } BoolArray(const BoolArray& other) : size_(other.size_), data_(new bool[size_]) { ALL(copy, other, begin()); } BoolArray(BoolArray&& other) noexcept : size_(other.size_), data_(other.data_) { other.data_ = nullptr; } BoolArray& operator=(const BoolArray& other) { if(this == &other) return *this; if(!data_ || size_ < other.size_) { delete[] data_; data_ = new bool[other.size_]; } size_ = other.size_; ALL(copy, other, begin()); return *this; } BoolArray& operator=(BoolArray&& other) noexcept { if(this == &other) return *this; size_ = other.size_; data_ = other.data_; other.data_ = nullptr; return *this; } BoolArray& operator=(initializer_list<bool> init) { if(!data_ || size_ < init.size()) { delete[] data_; data_ = new bool[init.size()]; } size_ = init.size(); ALL(copy, init, begin()); return *this; } void swap(BoolArray& other) noexcept { std::swap(size_, other.size_); std::swap(data_, other.data_); } ~BoolArray() { delete[] data_; data_ = nullptr; } bool empty() const noexcept { return size_ == 0; } size_type size() const noexcept { return size_; } size_type max_size() const noexcept { return 1'010'000'000; } iterator begin() noexcept { return data_; } const_iterator begin() const noexcept { return data_; } const_iterator cbegin() const noexcept { return data_; } iterator end() noexcept { return data_+size_; } const_iterator end() const noexcept { return data_+size_; } const_iterator cend() const noexcept { return data_+size_; } reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); } const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); } reverse_iterator rend() noexcept { return reverse_iterator(begin()); } const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); } const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); } reference operator[](size_type pos) { return data_[pos]; } const_reference operator[](size_type pos) const { return data_[pos]; } bool* data() noexcept { return data_; } const bool* data() const noexcept { return data_; } private: size_t size_; bool* data_; }; void swap(BoolArray& lhs, BoolArray& rhs) noexcept { lhs.swap(rhs); } bool operator==(const BoolArray& lhs, const BoolArray& rhs) { return equal(begin(lhs), end(lhs), begin(rhs), end(rhs)); } bool operator!=(const BoolArray& lhs, const BoolArray& rhs) { return !(lhs == rhs); } bool operator<(const BoolArray& lhs, const BoolArray& rhs) { return lexicographical_compare(begin(lhs), end(lhs), begin(rhs), end(rhs)); } bool operator> (const BoolArray& lhs, const BoolArray& rhs) { return rhs < lhs; } bool operator<=(const BoolArray& lhs, const BoolArray& rhs) { return !(rhs < lhs); } bool operator>=(const BoolArray& lhs, const BoolArray& rhs) { return !(lhs < rhs); } // }}} // 多次元 vector {{{ // 最内周が vector<bool> になるのを避けるための措置 template<typename T> struct Array1Container { using type = vector<T>; }; template<> struct Array1Container<bool> { using type = BoolArray; }; // イテレート用 template<typename T> struct is_arrayn_container : false_type {}; template<typename T> struct is_arrayn_container<vector<T>> : true_type {}; template<> struct is_arrayn_container<BoolArray> : true_type {}; template<typename T> auto arrayn_make(i64 n, T x) { using Cont = typename Array1Container<T>::type; return Cont(n, x); } template<typename T, typename... Args, SFINAE(sizeof...(Args) >= 2)> auto arrayn_make(i64 n, Args... args) { auto inner = arrayn_make<T>(args...); return vector<decltype(inner)>(n, inner); } template<typename T, typename F, SFINAE(!is_arrayn_container<T>::value)> void arrayn_foreach(T& e, F f) { f(e); } template<typename T, typename F, SFINAE(is_arrayn_container<T>::value)> void arrayn_foreach(T& ary, F f) { for(auto& e : ary) arrayn_foreach(e, f); } template<typename T, typename U, SFINAE(is_arrayn_container<T>::value)> void arrayn_fill(T& ary, const U& x) { arrayn_foreach(ary, [&x](auto& e) { e = x; }); } // }}} // 多次元生配列 {{{ template<typename T, typename F, SFINAE(rank<T>::value==0)> void CARRAY_FOREACH(T& e, F f) { f(e); } template<typename Array, typename F, SFINAE(rank<Array>::value!=0)> void CARRAY_FOREACH(Array& ary, F f) { for(auto& e : ary) CARRAY_FOREACH(e, f); } template<typename Array, typename U, SFINAE(rank<Array>::value!=0)> void CARRAY_FILL(Array& ary, const U& v) { CARRAY_FOREACH(ary, [&v](auto& e) { e = v; }); } // }}} // メモ化ラッパー (8引数まで) {{{ template<i64 N1, typename F> class Memoized1 { static_assert(N1 >= 1, ""); public: explicit Memoized1(F&& f) : f_(forward<F>(f)) {} decltype(auto) operator()(i64 x1) const { using R = decltype(f_(*this,x1)); static bool done[N1] {}; static R memo[N1]; if(!done[x1]) { memo[x1] = f_(*this,x1); done[x1] = true; } return memo[x1]; } private: const F f_; }; template<i64 N1, i64 N2, typename F> class Memoized2 { static_assert(N1 >= 1 && N2 >= 1, ""); public: explicit Memoized2(F&& f) : f_(forward<F>(f)) {} decltype(auto) operator()(i64 x1, i64 x2) const { using R = decltype(f_(*this,x1,x2)); static bool done[N1][N2] {}; static R memo[N1][N2]; if(!done[x1][x2]) { memo[x1][x2] = f_(*this,x1,x2); done[x1][x2] = true; } return memo[x1][x2]; } private: const F f_; }; template<i64 N1, i64 N2, i64 N3, typename F> class Memoized3 { static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1, ""); public: explicit Memoized3(F&& f) : f_(forward<F>(f)) {} decltype(auto) operator()(i64 x1, i64 x2, i64 x3) const { using R = decltype(f_(*this,x1,x2,x3)); static bool done[N1][N2][N3] {}; static R memo[N1][N2][N3]; if(!done[x1][x2][x3]) { memo[x1][x2][x3] = f_(*this,x1,x2,x3); done[x1][x2][x3] = true; } return memo[x1][x2][x3]; } private: const F f_; }; template<i64 N1, i64 N2, i64 N3, i64 N4, typename F> class Memoized4 { static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1, ""); public: explicit Memoized4(F&& f) : f_(forward<F>(f)) {} decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4) const { using R = decltype(f_(*this,x1,x2,x3,x4)); static bool done[N1][N2][N3][N4] {}; static R memo[N1][N2][N3][N4]; if(!done[x1][x2][x3][x4]) { memo[x1][x2][x3][x4] = f_(*this,x1,x2,x3,x4); done[x1][x2][x3][x4] = true; } return memo[x1][x2][x3][x4]; } private: const F f_; }; template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, typename F> class Memoized5 { static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1 && N5 >= 1, ""); public: explicit Memoized5(F&& f) : f_(forward<F>(f)) {} decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4, i64 x5) const { using R = decltype(f_(*this,x1,x2,x3,x4,x5)); static bool done[N1][N2][N3][N4][N5] {}; static R memo[N1][N2][N3][N4][N5]; if(!done[x1][x2][x3][x4][x5]) { memo[x1][x2][x3][x4][x5] = f_(*this,x1,x2,x3,x4,x5); done[x1][x2][x3][x4][x5] = true; } return memo[x1][x2][x3][x4][x5]; } private: const F f_; }; template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, typename F> class Memoized6 { static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1 && N5 >= 1 && N6 >= 1, ""); public: explicit Memoized6(F&& f) : f_(forward<F>(f)) {} decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4, i64 x5, i64 x6) const { using R = decltype(f_(*this,x1,x2,x3,x4,x5,x6)); static bool done[N1][N2][N3][N4][N5][N6] {}; static R memo[N1][N2][N3][N4][N5][N6]; if(!done[x1][x2][x3][x4][x5][x6]) { memo[x1][x2][x3][x4][x5][x6] = f_(*this,x1,x2,x3,x4,x5,x6); done[x1][x2][x3][x4][x5][x6] = true; } return memo[x1][x2][x3][x4][x5][x6]; } private: const F f_; }; template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, i64 N7, typename F> class Memoized7 { static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1 && N5 >= 1 && N6 >= 1 && N7 >= 1, ""); public: explicit Memoized7(F&& f) : f_(forward<F>(f)) {} decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4, i64 x5, i64 x6, i64 x7) const { using R = decltype(f_(*this,x1,x2,x3,x4,x5,x6,x7)); static bool done[N1][N2][N3][N4][N5][N6][N7] {}; static R memo[N1][N2][N3][N4][N5][N6][N7]; if(!done[x1][x2][x3][x4][x5][x6][x7]) { memo[x1][x2][x3][x4][x5][x6][x7] = f_(*this,x1,x2,x3,x4,x5,x6,x7); done[x1][x2][x3][x4][x5][x6][x7] = true; } return memo[x1][x2][x3][x4][x5][x6][x7]; } private: const F f_; }; template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, i64 N7, i64 N8, typename F> class Memoized8 { static_assert(N1 >= 1 && N2 >= 1 && N3 >= 1 && N4 >= 1 && N5 >= 1 && N6 >= 1 && N7 >= 1 && N8 >= 1, ""); public: explicit Memoized8(F&& f) : f_(forward<F>(f)) {} decltype(auto) operator()(i64 x1, i64 x2, i64 x3, i64 x4, i64 x5, i64 x6, i64 x7, i64 x8) const { using R = decltype(f_(*this,x1,x2,x3,x4,x5,x6,x7,x8)); static bool done[N1][N2][N3][N4][N5][N6][N7][N8] {}; static R memo[N1][N2][N3][N4][N5][N6][N7][N8]; if(!done[x1][x2][x3][x4][x5][x6][x7][x8]) { memo[x1][x2][x3][x4][x5][x6][x7][x8] = f_(*this,x1,x2,x3,x4,x5,x6,x7,x8); done[x1][x2][x3][x4][x5][x6][x7][x8] = true; } return memo[x1][x2][x3][x4][x5][x6][x7][x8]; } private: const F f_; }; template<i64 N1, typename F> decltype(auto) MEMOIZE(F&& f) { return Memoized1<N1,F>(forward<F>(f)); } template<i64 N1, i64 N2, typename F> decltype(auto) MEMOIZE(F&& f) { return Memoized2<N1,N2,F>(forward<F>(f)); } template<i64 N1, i64 N2, i64 N3, typename F> decltype(auto) MEMOIZE(F&& f) { return Memoized3<N1,N2,N3,F>(forward<F>(f)); } template<i64 N1, i64 N2, i64 N3, i64 N4, typename F> decltype(auto) MEMOIZE(F&& f) { return Memoized4<N1,N2,N3,N4,F>(forward<F>(f)); } template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, typename F> decltype(auto) MEMOIZE(F&& f) { return Memoized5<N1,N2,N3,N4,N5,F>(forward<F>(f)); } template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, typename F> decltype(auto) MEMOIZE(F&& f) { return Memoized6<N1,N2,N3,N4,N5,N6,F>(forward<F>(f)); } template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, i64 N7, typename F> decltype(auto) MEMOIZE(F&& f) { return Memoized7<N1,N2,N3,N4,N5,N6,N7,F>(forward<F>(f)); } template<i64 N1, i64 N2, i64 N3, i64 N4, i64 N5, i64 N6, i64 N7, i64 N8, typename F> decltype(auto) MEMOIZE(F&& f) { return Memoized8<N1,N2,N3,N4,N5,N6,N7,N8,F>(forward<F>(f)); } // }}} // lambda で再帰 {{{ template<typename F> class FixPoint { public: explicit constexpr FixPoint(F&& f) : f_(forward<F>(f)) {} template<typename... Args> constexpr decltype(auto) operator()(Args&&... args) const { return f_(*this, forward<Args>(args)...); } private: const F f_; }; template<typename F> decltype(auto) FIX(F&& f) { return FixPoint<F>(forward<F>(f)); } // }}} // tuple {{{ template<typename... TS, SFINAE(sizeof...(TS) > 0)> constexpr auto tuple_head(const tuple<TS...>& t) { return get<0>(t); } template<typename... TS, size_t i, size_t... is> constexpr auto tuple_tail_helper(const tuple<TS...>& t, index_sequence<i,is...>) { return make_tuple(get<is>(t)...); } template<typename... TS, SFINAE(sizeof...(TS) == 1)> constexpr auto tuple_tail(const tuple<TS...>&) { return make_tuple(); } template<typename... TS, SFINAE(sizeof...(TS) > 1)> constexpr auto tuple_tail(const tuple<TS...>& t) { return tuple_tail_helper(t, make_index_sequence<sizeof...(TS)>()); } template<i64 I=0, typename F, typename... TS, SFINAE(sizeof...(TS) == I)> void tuple_enumerate(tuple<TS...>&, F&&) {} template<i64 I=0, typename F, typename... TS, SFINAE(sizeof...(TS) > I)> void tuple_enumerate(tuple<TS...>& t, F&& f) { f(I, get<I>(t)); tuple_enumerate<I+1>(t, f); } template<i64 I=0, typename F, typename... TS, SFINAE(sizeof...(TS) == I)> void tuple_enumerate(const tuple<TS...>&, F&&) {} template<i64 I=0, typename F, typename... TS, SFINAE(sizeof...(TS) > I)> void tuple_enumerate(const tuple<TS...>& t, F&& f) { f(I, get<I>(t)); tuple_enumerate<I+1>(t, f); } // }}} // FST/SND {{{ template<typename T1, typename T2> T1& FST(pair<T1,T2>& p) { return p.first; } template<typename T1, typename T2> const T1& FST(const pair<T1,T2>& p) { return p.first; } template<typename T1, typename T2> T2& SND(pair<T1,T2>& p) { return p.second; } template<typename T1, typename T2> const T2& SND(const pair<T1,T2>& p) { return p.second; } template<typename... TS, SFINAE(sizeof...(TS) >= 1)> auto& FST(tuple<TS...>& t) { return get<0>(t); } template<typename... TS, SFINAE(sizeof...(TS) >= 1)> const auto& FST(const tuple<TS...>& t) { return get<0>(t); } template<typename... TS, SFINAE(sizeof...(TS) >= 2)> auto& SND(tuple<TS...>& t) { return get<1>(t); } template<typename... TS, SFINAE(sizeof...(TS) >= 2)> const auto& SND(const tuple<TS...>& t) { return get<1>(t); } // }}} template<typename T1, typename T2, typename Comp=less<>, SFINAE( is_integral<T1>::value && is_integral<T2>::value && is_signed<T1>::value != is_unsigned<T2>::value )> common_type_t<T1,T2> MAX(T1 x, T2 y, Comp comp={}) { return max<common_type_t<T1,T2>>(x, y, comp); } template<typename T1, typename T2, typename Comp=less<>, SFINAE( is_floating_point<T1>::value && is_floating_point<T2>::value )> common_type_t<T1,T2> MAX(T1 x, T2 y, Comp comp={}) { return max<common_type_t<T1,T2>>(x, y, comp); } template<typename T, typename Comp=less<>> const T& MAX(const T& x, const T& y, Comp comp={}) { return max(x, y, comp); } template<typename T, typename Comp=less<>> T MAX(initializer_list<T> ilist, Comp comp={}) { return max(ilist, comp); } template<typename T1, typename T2, typename Comp=less<>, SFINAE( is_integral<T1>::value && is_integral<T2>::value && is_signed<T1>::value != is_unsigned<T2>::value )> common_type_t<T1,T2> MIN(T1 x, T2 y, Comp comp={}) { return min<common_type_t<T1,T2>>(x, y, comp); } template<typename T1, typename T2, typename Comp=less<>, SFINAE( is_floating_point<T1>::value && is_floating_point<T2>::value )> common_type_t<T1,T2> MIN(T1 x, T2 y, Comp comp={}) { return min<common_type_t<T1,T2>>(x, y, comp); } template<typename T, typename Comp=less<>> const T& MIN(const T& x, const T& y, Comp comp={}) { return min(x, y, comp); } template<typename T, typename Comp=less<>> T MIN(initializer_list<T> ilist, Comp comp={}) { return min(ilist, comp); } template<typename T1, typename T2, typename T3, typename Comp=less<>, SFINAE( is_integral<T1>::value && is_integral<T2>::value && is_integral<T3>::value && is_signed<T1>::value != is_unsigned<T2>::value && is_signed<T2>::value != is_unsigned<T3>::value )> common_type_t<T1,T2,T3> CLAMP(T1 x, T2 xmin, T3 xmax, Comp comp={}) { ASSERT(!comp(xmax, xmin)); if(comp(x, xmin)) return xmin; if(comp(xmax, x)) return xmax; return x; } template<typename T1, typename T2, typename T3, typename Comp=less<>, SFINAE( is_floating_point<T1>::value && is_floating_point<T2>::value && is_floating_point<T3>::value )> common_type_t<T1,T2,T3> CLAMP(T1 x, T2 xmin, T3 xmax, Comp comp={}) { ASSERT(!comp(xmax, xmin)); if(comp(x, xmin)) return xmin; if(comp(xmax, x)) return xmax; return x; } template<typename T, typename Comp=less<>> const T& CLAMP(const T& x, const T& xmin, const T& xmax, Comp comp={}) { ASSERT(!comp(xmax, xmin)); if(comp(x, xmin)) return xmin; if(comp(xmax, x)) return xmax; return x; } template<typename T> T ABS(T x) { static_assert(is_signed<T>::value, "ABS(): argument must be signed"); return x < 0 ? -x : x; } f64 ROUND(f64 x) { return round(x); } i64 IROUND(f64 x) { return llround(x); } template<typename C> i64 SIZE(const C& c) { return static_cast<i64>(c.size()); } template<typename T, size_t N> i64 SIZE(const T (&)[N]) { return static_cast<i64>(N); } bool is_odd (i64 x) { return x % 2 != 0; } bool is_even(i64 x) { return x % 2 == 0; } template<typename T> i64 cmp(T x, T y) { return (y<x) - (x<y); } template<typename T> i64 sgn(T x) { return cmp(x, T(0)); } // 事前条件: a >= 0, b >= 0 i64 gcd_impl(i64 a, i64 b) { if(b == 0) return a; return gcd_impl(b, a%b); } // GCD(0,0) = 0 i64 GCD(i64 a, i64 b) { return gcd_impl(ABS(a), ABS(b)); } // LCM(0,x) は未定義 i64 LCM(i64 a, i64 b) { ASSERT(a != 0 && b != 0); a = ABS(a); b = ABS(b); return a / gcd_impl(a,b) * b; } // lo:OK, hi:NG template<typename Pred> i64 bisect_integer(i64 lo, i64 hi, Pred pred) { ASSERT(lo < hi); while(lo+1 < hi) { i64 mid = (lo+hi) / 2; if(pred(mid)) lo = mid; else hi = mid; } return lo; } template<typename Pred> f64 bisect_real(f64 lo, f64 hi, Pred pred, i64 iter=100) { ASSERT(lo < hi); REP(_, iter) { f64 mid = (lo+hi) / 2; if(pred(mid)) lo = mid; else hi = mid; } return lo; } i64 ipow(i64 x, i64 e) { ASSERT(e >= 0); i64 res = 1; REP(_, e) { res *= x; } return res; } i64 sqrt_floor(i64 x) { ASSERT(x >= 0); i64 lo = 0; i64 hi = MIN(x/2+2, 3037000500LL); return bisect_integer(lo, hi, [x](i64 r) { return r*r <= x; }); } i64 sqrt_ceil(i64 x) { i64 r = sqrt_floor(x); return r*r == x ? r : r+1; } // 0 <= log2_ceil(x) <= 63 i64 log2_ceil(i64 x) { ASSERT(x > 0); return 64 - BIT_COUNT_LEADING_ZEROS(x-1); } // 0 <= log2_floor(x) <= 62 i64 log2_floor(i64 x) { ASSERT(x > 0); return 63 - BIT_COUNT_LEADING_ZEROS(x); } // 0 <= log10_ceil(x) <= 19 i64 log10_ceil(i64 x) { ASSERT(x > 0); static constexpr i8 TABLE1[64] { -1, 19, 19, 19, 19, 18, 18, 18, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 0, }; static constexpr i64 TABLE2[20] { 0LL, 1LL, 10LL, 100LL, 1000LL, 10000LL, 100000LL, 1000000LL, 10000000LL, 100000000LL, 1000000000LL, 10000000000LL, 100000000000LL, 1000000000000LL, 10000000000000LL, 100000000000000LL, 1000000000000000LL, 10000000000000000LL, 100000000000000000LL, 1000000000000000000LL, }; i64 res = TABLE1[BIT_COUNT_LEADING_ZEROS(x)]; if(x <= TABLE2[res]) --res; return res; } // 0 <= log10_floor(x) <= 18 i64 log10_floor(i64 x) { ASSERT(x > 0); static constexpr i8 TABLE1[64] { -1, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, }; static constexpr i64 TABLE2[19] { 1LL, 10LL, 100LL, 1000LL, 10000LL, 100000LL, 1000000LL, 10000000LL, 100000000LL, 1000000000LL, 10000000000LL, 100000000000LL, 1000000000000LL, 10000000000000LL, 100000000000000LL, 1000000000000000LL, 10000000000000000LL, 100000000000000000LL, 1000000000000000000LL, }; i64 res = TABLE1[BIT_COUNT_LEADING_ZEROS(x)]; if(x < TABLE2[res]) --res; return res; } // 2^n - 1 の形かどうか bool is_mersenne(i64 x) { ASSERT(x >= 0); return (x&(x+1)) == 0; } bool is_pow2(i64 x) { ASSERT(x > 0); return (x&(x-1)) == 0; } // x > 0 i64 pow2_ceil(i64 x) { return BIT_I(log2_ceil(x)); } // x > 0 i64 pow2_floor(i64 x) { return BIT_I(log2_floor(x)); } // Haskell の divMod と同じ pair<i64,i64> divmod(i64 a, i64 b) { i64 q = a / b; i64 r = a % b; if((b>0 && r<0) || (b<0 && r>0)) { --q; r += b; } return {q,r}; } i64 div_ceil(i64 a, i64 b) { i64 q = a / b; i64 r = a % b; if((b>0 && r>0) || (b<0 && r<0)) ++q; return q; } i64 div_floor(i64 a, i64 b) { return divmod(a,b).first; } i64 modulo(i64 a, i64 b) { return divmod(a,b).second; } // x を align の倍数に切り上げる i64 align_ceil(i64 x, i64 align) { ASSERT(align > 0); return div_ceil(x,align) * align; } // x を align の倍数に切り下げる i64 align_floor(i64 x, i64 align) { ASSERT(align > 0); return div_floor(x,align) * align; } bool feq(f64 x, f64 y, f64 eps=EPS) { return fabs(x-y) < eps; } template<typename T, typename U, typename Comp=less<>> bool chmax(T& xmax, const U& x, Comp comp={}) { if(comp(xmax, x)) { xmax = x; return true; } return false; } template<typename T, typename U, typename Comp=less<>> bool chmin(T& xmin, const U& x, Comp comp={}) { if(comp(x, xmin)) { xmin = x; return true; } return false; } template<typename Pred> i64 arg_find(i64 lo, i64 hi, Pred pred) { ASSERT(lo < hi); FOR(x, lo, hi) { if(pred(x)) return x; } return INF; } template<typename F> i64 arg_max(i64 lo, i64 hi, F f) { ASSERT(lo < hi); i64 res = lo; auto ymax = f(lo); FOR(x, lo+1, hi) { if(chmax(ymax, f(x))) res = x; } return res; } template<typename F> i64 arg_min(i64 lo, i64 hi, F f) { ASSERT(lo < hi); i64 res = lo; auto ymin = f(lo); FOR(x, lo+1, hi) { if(chmin(ymin, f(x))) res = x; } return res; } template<typename Pred> i64 arg_find_r(i64 lo, i64 hi, Pred pred) { i64 x = arg_find(-hi+1, lo+1, [pred](i64 xx) { return pred(-xx); }); return x == INF ? INF : -x; } template<typename F> i64 arg_max_r(i64 lo, i64 hi, F f) { return -arg_max(-hi+1, lo+1, [f](i64 x) { return f(-x); }); } template<typename F> i64 arg_min_r(i64 lo, i64 hi, F f) { return -arg_min(-hi+1, lo+1, [f](i64 x) { return f(-x); }); } template<typename ForwardIt, typename T, typename Comp=less<>> ForwardIt bsearch_find(ForwardIt first, ForwardIt last, const T& x, Comp comp={}) { auto it = lower_bound(first, last, x, comp); if(it == last || comp(x,*it)) return last; return it; } // x 未満の最後の要素 template<typename BidiIt, typename T, typename Comp=less<>> BidiIt bsearch_lt(BidiIt first, BidiIt last, const T& x, Comp comp={}) { auto it = lower_bound(first, last, x, comp); if(it == first) return last; return prev(it); } // x 以下の最後の要素 template<typename BidiIt, typename T, typename Comp=less<>> BidiIt bsearch_le(BidiIt first, BidiIt last, const T& x, Comp comp={}) { auto it = upper_bound(first, last, x, comp); if(it == first) return last; return prev(it); } // x より大きい最初の要素 template<typename BidiIt, typename T, typename Comp=less<>> BidiIt bsearch_gt(BidiIt first, BidiIt last, const T& x, Comp comp={}) { return upper_bound(first, last, x, comp); } // x 以上の最初の要素 template<typename BidiIt, typename T, typename Comp=less<>> BidiIt bsearch_ge(BidiIt first, BidiIt last, const T& x, Comp comp={}) { return lower_bound(first, last, x, comp); } template<typename InputIt, typename BinaryOp> auto FOLD(InputIt first, InputIt last, typename iterator_traits<InputIt>::value_type init, BinaryOp op) { for(; first != last; ++first) init = op(move(init), *first); return init; } template<typename InputIt, typename BinaryOp> auto FOLD1(InputIt first, InputIt last, BinaryOp op) { auto init = *first++; return FOLD(first, last, init, op); } template<typename InputIt> auto SUM(InputIt first, InputIt last) { using T = typename iterator_traits<InputIt>::value_type; return accumulate(first, last, T()); } template<typename ForwardIt, typename UnaryOperation> ForwardIt transform_self(ForwardIt first, ForwardIt last, UnaryOperation op) { return transform(first, last, first, op); } template<typename C> void UNIQ(C& c) { c.erase(ALL(unique,c), end(c)); } template<typename BinaryFunc> auto FLIP(BinaryFunc f) { return [f](const auto& x, const auto& y) { return f(y,x); }; } template<typename BinaryFunc, typename UnaryFunc> auto ON(BinaryFunc bf, UnaryFunc uf) { return [bf,uf](const auto& x, const auto& y) { return bf(uf(x), uf(y)); }; } template<typename F> auto LT_ON(F f) { return ON(less<>(), f); } template<typename F> auto GT_ON(F f) { return ON(greater<>(), f); } template<typename F> auto EQ_ON(F f) { return ON(equal_to<>(), f); } template<typename F> auto NE_ON(F f) { return ON(not_equal_to<>(), f); } template<typename Comp=less<>> auto EQUIV(Comp comp={}) { return [comp](const auto& lhs, const auto& rhs) { return !comp(lhs,rhs) && !comp(rhs,lhs); }; } char digit_chr(i64 n) { return static_cast<char>('0' + n); } i64 digit_ord(char c) { return c - '0'; } char lower_chr(i64 n) { return static_cast<char>('a' + n); } i64 lower_ord(char c) { return c - 'a'; } char upper_chr(i64 n) { return static_cast<char>('A' + n); } i64 upper_ord(char c) { return c - 'A'; } // 出力は operator<< を直接使わず、このテンプレート経由で行う // 提出用出力とデバッグ用出力を分けるため template<typename T, typename Enable=void> struct Formatter { static ostream& write_str(ostream& out, const T& x) { return out << x; } static ostream& write_repr(ostream& out, const T& x) { return out << x; } }; template<typename T> ostream& WRITE_STR(ostream& out, const T& x) { return Formatter<T>::write_str(out, x); } template<typename T> ostream& WRITE_REPR(ostream& out, const T& x) { return Formatter<T>::write_repr(out, x); } template<typename InputIt> ostream& WRITE_JOIN_STR(ostream& out, InputIt first, InputIt last, const string& sep) { while(first != last) { WRITE_STR(out, *first++); if(first != last) out << sep; } return out; } template<typename InputIt> ostream& WRITE_JOIN_REPR(ostream& out, InputIt first, InputIt last, const string& sep) { while(first != last) { WRITE_REPR(out, *first++); if(first != last) out << sep; } return out; } template<typename InputIt> ostream& WRITE_RANGE_STR(ostream& out, InputIt first, InputIt last) { return WRITE_JOIN_STR(out, first, last, " "); } template<typename InputIt> ostream& WRITE_RANGE_REPR(ostream& out, InputIt first, InputIt last) { out << "["; WRITE_JOIN_REPR(out, first, last, ", "); out << "]"; return out; } template<typename T> string TO_STR(const T& x) { ostringstream out; WRITE_STR(out, x); return out.str(); } template<typename T> string TO_REPR(const T& x) { ostringstream out; WRITE_REPR(out, x); return out.str(); } template<typename InputIt> string RANGE_TO_STR(InputIt first, InputIt last) { ostringstream out; WRITE_RANGE_STR(out, first, last); return out.str(); } template<typename InputIt> string RANGE_TO_REPR(InputIt first, InputIt last) { ostringstream out; WRITE_RANGE_REPR(out, first, last); return out.str(); } template<typename InputIt> string JOIN(InputIt first, InputIt last, const string& sep) { ostringstream out; WRITE_JOIN_STR(out, first, last, sep); return out.str(); } template<> struct Formatter<i64> { static ostream& write_str(ostream& out, i64 x) { return out << x; } static ostream& write_repr(ostream& out, i64 x) { if(x == INF) return out << "INF"; if(x == -INF) return out << "-INF"; return out << x; } }; template<> struct Formatter<f64> { static ostream& write_str(ostream& out, f64 x) { return out << x; } static ostream& write_repr(ostream& out, f64 x) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" if(x == FINF) return out << "FINF"; if(x == -FINF) return out << "-FINF"; #pragma GCC diagnostic pop return out << x; } }; template<typename Enum> struct Formatter<Enum, enable_if_t<is_enum<Enum>::value>> { static ostream& write_str(ostream& out, Enum x) { return WRITE_STR(out, static_cast<underlying_type_t<Enum>>(x)); } static ostream& write_repr(ostream& out, Enum x) { return WRITE_REPR(out, static_cast<underlying_type_t<Enum>>(x)); } }; template<typename T> struct Formatter<vector<T>> { static ostream& write_str(ostream& out, const vector<T>& v) { return WRITE_RANGE_STR(out, begin(v), end(v)); } static ostream& write_repr(ostream& out, const vector<T>& v) { out << "vector"; return WRITE_RANGE_REPR(out, begin(v), end(v)); } }; template<> struct Formatter<vector<string>> { static ostream& write_str(ostream& out, const vector<string>& v) { for(const auto& row : v) { WRITE_STR(out, row); out << "\n"; } return out; } static ostream& write_repr(ostream& out, const vector<string>& v) { out << "\n"; for(const auto& row : v) { WRITE_STR(out, row); out << "\n"; } return out; } }; template<> struct Formatter<BoolArray> { static ostream& write_str(ostream& out, const BoolArray& a) { return WRITE_RANGE_STR(out, begin(a), end(a)); } static ostream& write_repr(ostream& out, const BoolArray& a) { out << "BoolArray"; return WRITE_RANGE_REPR(out, begin(a), end(a)); } }; template<typename T1, typename T2> struct Formatter<pair<T1,T2>> { static ostream& write_str(ostream& out, const pair<T1,T2>& p) { WRITE_STR(out, p.first); out << ' '; WRITE_STR(out, p.second); return out; } static ostream& write_repr(ostream& out, const pair<T1,T2>& p) { out << "("; WRITE_REPR(out, p.first); out << ","; WRITE_REPR(out, p.second); out << ")"; return out; } }; template<typename... TS> struct Formatter<tuple<TS...>> { static ostream& write_str(ostream& out, const tuple<TS...>& t) { tuple_enumerate(t, [&out](i64 i, const auto& e) { if(i != 0) out << ' '; WRITE_STR(out, e); }); return out; } static ostream& write_repr(ostream& out, const tuple<TS...>& t) { out << "("; tuple_enumerate(t, [&out](i64 i, const auto& e) { if(i != 0) out << ","; WRITE_REPR(out, e); }); out << ")"; return out; } }; template<typename T, typename Enable=void> struct Scanner { static_assert(!is_same<T,bool>::value, "Scanner<bool> is not supported"); static T read(istream& in) { T res; in >> res; return res; } }; template<typename T> struct Scanner<T, enable_if_t<is_integral<T>::value && !is_same<T,bool>::value>> { static T read(istream& in) { T res; in >> res; return res; } static T read1(istream& in) { return read(in) - 1; } }; template<typename T> T READ(istream& in) { return Scanner<T>::read(in); } template<typename T> T READ1(istream& in) { return Scanner<T>::read1(in); } template<typename T> T FROM_STR(const string& s) { istringstream in(s); return READ<T>(in); } template<typename T=i64> T RD() { T res = READ<T>(cin); #ifdef PROCON_LOCAL ASSERT(cin); #endif return res; } template<typename T=i64> T RD1() { T res = READ1<T>(cin); #ifdef PROCON_LOCAL ASSERT(cin); #endif return res; } template<typename T=i64> auto RD_ARRAY(i64 n) { vector<T> res; res.reserve(n); REP(_, n) { res.emplace_back(RD<T>()); } return res; } template<typename T=i64> auto RD1_ARRAY(i64 n) { vector<T> res; res.reserve(n); REP(_, n) { res.emplace_back(RD1<T>()); } return res; } template<typename T=i64> auto RD_ARRAY2(i64 h, i64 w) { vector<vector<T>> res(h); for(auto& row : res) { row.reserve(w); REP(_, w) { row.emplace_back(RD<T>()); } } return res; } template<typename T=i64> auto RD1_ARRAY2(i64 h, i64 w) { vector<vector<T>> res(h); for(auto& row : res) { row.reserve(w); REP(_, w) { row.emplace_back(RD1<T>()); } } return res; } template<typename T1, typename T2> struct Scanner<pair<T1,T2>> { static pair<T1,T2> read(istream& in) { T1 x = READ<T1>(in); T2 y = READ<T2>(in); return {x,y}; } }; template<typename... TS> struct Scanner<tuple<TS...>> { template<i64 I, SFINAE(sizeof...(TS) == I)> static auto read_impl(istream&) { return make_tuple(); } template<i64 I, SFINAE(sizeof...(TS) > I)> static auto read_impl(istream& in) { using T = tuple_element_t<I,tuple<TS...>>; auto head = make_tuple(READ<T>(in)); return tuple_cat(head, read_impl<I+1>(in)); } static tuple<TS...> read(istream& in) { return read_impl<0>(in); } }; void PRINT() {} template<typename T, typename... TS> void PRINT(const T& x, const TS& ...args) { WRITE_STR(cout, x); if(sizeof...(args)) { cout << ' '; PRINT(args...); } } template<typename... TS> void PRINTLN(const TS& ...args) { PRINT(args...); cout << '\n'; } [[noreturn]] void EXIT() { cout.flush(); #ifdef PROCON_LOCAL cerr.flush(); exit(0); #else _Exit(0); #endif } // hash {{{ u64 splitmix64(u64 x) noexcept { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } u64 RANDOM_SEED() noexcept { int dummy; static const u64 res = splitmix64(chrono::high_resolution_clock::now().time_since_epoch().count()) + splitmix64(reinterpret_cast<u64>(&dummy)) + splitmix64(reinterpret_cast<u64>(new char)); return res; } template<typename T, typename Enable=void> struct procon_hash { static_assert(!is_pointer<T>::value, "procon_hash<T*> is not supported"); static_assert(!is_floating_point<T>::value, "procon_hash<Real> is not supported"); size_t operator()(const T& x) const noexcept { return hash<T>{}(x); } }; template<typename T> size_t procon_hash_value(const T& x) noexcept { return procon_hash<T>{}(x); } template<typename InputIt> size_t procon_hash_range(InputIt first, InputIt last) noexcept { size_t res = 0; for(; first != last; ++first) { res *= 2; res += procon_hash_value(*first); } return res; } template<typename T> struct procon_hash<T,enable_if_t<is_integral<T>::value>> { size_t operator()(T x) const noexcept { return splitmix64(x + RANDOM_SEED()); } }; template<> struct procon_hash<string> { static size_t BASE() noexcept { return 14695981039346656037ULL + RANDOM_SEED(); } size_t operator()(const string& s) const noexcept { static constexpr size_t P = 1099511628211ULL; size_t res = BASE(); for(char c : s) { res ^= c; res *= P; } return res; } }; template<typename T1, typename T2> struct procon_hash<pair<T1,T2>> { size_t operator()(const pair<T1,T2>& p) const noexcept { size_t h1 = procon_hash_value(FST(p)); size_t h2 = procon_hash_value(SND(p)); return 2*h1 + h2; } }; template<typename... TS> struct procon_hash<tuple<TS...>> { size_t operator()(const tuple<TS...>& t) const noexcept { size_t res = 0; tuple_enumerate(t, [&res](i64, const auto& e) noexcept { res *= 2; res += procon_hash_value(e); }); return res; } }; template<typename T> struct procon_hash<vector<T>> { size_t operator()(const vector<T>& v) const noexcept { return ALL(procon_hash_range, v); } }; template<typename T, typename Hash=procon_hash<T>, typename Eq=equal_to<T>> using HashSet = unordered_set<T,Hash,Eq>; template<typename K, typename V, typename Hash=procon_hash<K>, typename Eq=equal_to<K>> using HashMap = unordered_map<K,V,Hash,Eq>; template<typename T, typename Hash=procon_hash<T>, typename Eq=equal_to<T>> using HashMultiset = unordered_multiset<T,Hash,Eq>; template<typename K, typename V, typename Hash=procon_hash<K>, typename Eq=equal_to<K>> using HashMultimap = unordered_multimap<K,V,Hash,Eq>; template<typename T, typename Hash=procon_hash<T>, typename Eq=equal_to<T>> auto make_hash_set(i64 cap, f32 load_max=0.25) { HashSet<T,Hash,Eq> res; res.max_load_factor(load_max); res.reserve(cap); return res; } template<typename K, typename V, typename Hash=procon_hash<K>, typename Eq=equal_to<K>> auto make_hash_map(i64 cap, f32 load_max=0.25) { HashMap<K,V,Hash,Eq> res; res.max_load_factor(load_max); res.reserve(cap); return res; } template<typename T, typename Hash=procon_hash<T>, typename Eq=equal_to<T>> auto make_hash_multiset(i64 cap, f32 load_max=0.25) { HashMultiset<T,Hash,Eq> res; res.max_load_factor(load_max); res.reserve(cap); return res; } template<typename K, typename V, typename Hash=procon_hash<K>, typename Eq=equal_to<K>> auto make_hash_multimap(i64 cap, f32 load_max=0.25) { HashMultimap<K,V,Hash,Eq> res; res.max_load_factor(load_max); res.reserve(cap); return res; } // }}} // stack/queue/priority_queue {{{ template<typename T> using MaxHeap = priority_queue<T, vector<T>, less<T>>; template<typename T> using MinHeap = priority_queue<T, vector<T>, greater<T>>; template<typename T, typename C> T POP(stack<T,C>& stk) { T x = stk.top(); stk.pop(); return x; } template<typename T, typename C> T POP(queue<T,C>& que) { T x = que.front(); que.pop(); return x; } template<typename T, typename C, typename Comp> T POP(priority_queue<T,C,Comp>& que) { T x = que.top(); que.pop(); return x; } // }}} // debug {{{ template<typename... TS, SFINAE(sizeof...(TS) == 1)> void DBG_IMPL(i64 line, const char* expr, const tuple<TS...>& value) { cerr << "[L " << line << "]: "; cerr << expr << " = "; WRITE_REPR(cerr, get<0>(value)); cerr << "\n"; } template<typename... TS, SFINAE(sizeof...(TS) >= 2)> void DBG_IMPL(i64 line, const char* expr, const tuple<TS...>& value) { cerr << "[L " << line << "]: "; cerr << "(" << expr << ") = "; WRITE_REPR(cerr, value); cerr << "\n"; } template<typename T, size_t N> void DBG_CARRAY_IMPL(i64 line, const char* expr, const T (&ary)[N]) { cerr << "[L " << line << "]: "; cerr << expr << " = "; WRITE_RANGE_REPR(cerr, begin(ary), end(ary)); cerr << "\n"; } template<typename InputIt> void DBG_RANGE_IMPL(i64 line, const char* expr1, const char* expr2, InputIt first, InputIt last) { cerr << "[L " << line << "]: "; cerr << expr1 << "," << expr2 << " = "; WRITE_RANGE_REPR(cerr, first, last); cerr << "\n"; } #ifdef PROCON_LOCAL #define DBG(args...) DBG_IMPL(__LINE__, CPP_STR_I(args), std::make_tuple(args)) #define DBG_CARRAY(expr) DBG_CARRAY_IMPL(__LINE__, CPP_STR(expr), (expr)) #define DBG_RANGE(first,last) DBG_RANGE_IMPL(__LINE__, CPP_STR(first), CPP_STR(last), (first), (last)) #else #define DBG(args...) #define DBG_CARRAY(expr) #define DBG_RANGE(first,last) #endif // }}} #define PAIR make_pair #define TUPLE make_tuple // }}} // init {{{ struct ProconInit { static constexpr int IOS_PREC = 15; static constexpr bool AUTOFLUSH = false; ProconInit() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(IOS_PREC); #ifdef PROCON_LOCAL cerr << fixed << setprecision(IOS_PREC); #endif if(AUTOFLUSH) cout << unitbuf; } } PROCON_INIT; // }}} // graph {{{ template<typename T> vector<vector<pair<i64,T>>> graph_make_weighted(i64 n) { return vector<vector<pair<i64,T>>>(n); } vector<vector<i64>> graph_make_unweighted(i64 n) { return vector<vector<i64>>(n); } // n 頂点の初期化済み隣接行列 g を返す // // g[i][j]: i==j なら 0, i!=j なら INF template<typename T> vector<vector<T>> graph_make_matrix(i64 n) { vector<vector<T>> g(n, vector<T>(n, PROCON_INF<T>())); REP(i, n) { g[i][i] = T(0); } return g; } // 辺のリストから n 頂点無向グラフの隣接リスト表現を得る vector<vector<i64>> graph_from_edges(i64 n, const vector<pair<i64,i64>>& es) { vector<vector<i64>> g(n); for(const auto& e : es) { i64 s,t; tie(s,t) = e; g[s].emplace_back(t); g[t].emplace_back(s); } return g; } // 単純無向グラフが木かどうか判定する // // g: 隣接リスト表現(頂点数 n > 0) bool graph_is_tree(const vector<vector<i64>>& g) { i64 n = SIZE(g); ASSERT(n > 0); i64 edge_cnt = 0; BoolArray visited(n, false); auto dfs = FIX([&g,&edge_cnt,&visited](auto&& self, i64 v) -> void { visited[v] = true; for(i64 to : g[v]) { if(visited[to]) continue; ++edge_cnt; self(to); } }); dfs(0); bool connected = ALL(all_of, visited, IDENTITY()); return edge_cnt == n-1 && connected; } // ダイクストラ法 // // (d,parent) を返す // d[i]: start から点 i への最短距離(到達不能な点は INF) // parent[i]: 最短経路木における点 i の親(start および到達不能な点は -1) template<typename T> tuple<vector<T>,vector<i64>> graph_dijkstra(const vector<vector<pair<i64,T>>>& g, i64 start) { i64 n = SIZE(g); vector<T> d(n, PROCON_INF<T>()); vector<i64> parent(n, -1); MinHeap<pair<T,i64>> que; d[start] = T(0); que.emplace(T(0), start); i64 n_remain = n; while(!que.empty()) { i64 dmin,vmin; tie(dmin,vmin) = POP(que); if(d[vmin] < dmin) continue; if(--n_remain == 0) break; for(const auto& p : g[vmin]) { i64 to,cost; tie(to,cost) = p; i64 d_new = dmin + cost; if(d_new < d[to]) { d[to] = d_new; parent[to] = vmin; que.emplace(d_new, to); } } } return make_tuple(d, parent); } // 辺のコストが非負かつ小さい場合の最良優先探索(01-BFS の一般化) // 全ての辺のコストは [0,k] であること // // (d,parent) を返す // d[i]: start から点 i への最短距離(到達不能な点は INF) // parent[i]: 最短経路木における点 i の親(start および到達不能な点は -1) template<typename T> tuple<vector<T>,vector<i64>> graph_k_bfs(const vector<vector<pair<i64,T>>>& g, i64 k, i64 start) { i64 n = SIZE(g); vector<T> d(n, PROCON_INF<T>()); vector<i64> parent(n, -1); vector<queue<i64>> ques(k+1); auto enqueue = [&ques](i64 to, i64 cost) { ques[cost].emplace(to); }; auto dequeue = [&ques]() -> i64 { for(auto& que : ques) if(!que.empty()) return POP(que); return -1; }; enqueue(start, 0); d[start] = 0; i64 v; while((v = dequeue()) != -1) { for(const auto& p : g[v]) { i64 to,cost; tie(to,cost) = p; i64 d_new = d[v] + cost; if(d_new < d[to]) { d[to] = d_new; parent[to] = v; enqueue(to, cost); } } } return make_tuple(d, parent); } // ベルマンフォード法 // // 負閉路が存在する場合、最短距離が負の無限大になる点が生じる。 // そのような点を全て検出するため、2*n 回ループしている // (一般的な実装の倍の回数。ただし更新がなくなったら打ち切る) // // (d,parent) を返す // d[i]: start から点 i への最短距離(到達不能なら INF, 負の無限大なら -INF) // parent[i]: 最短経路木における点 i の親(start および到達不能な点は -1) template<typename T> tuple<vector<T>,vector<i64>> graph_bellman(const vector<vector<pair<i64,T>>>& g, i64 start) { i64 n = SIZE(g); vector<T> d(n, PROCON_INF<T>()); vector<i64> parent(n, -1); d[start] = T(0); REP(i, 2*n) { bool update = false; REP(from, n) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" if(d[from] == PROCON_INF<T>()) continue; for(const auto& p : g[from]) { i64 to,cost; tie(to,cost) = p; i64 d_new = d[from] == -PROCON_INF<T>() ? -PROCON_INF<T>() : d[from] + cost; if(d_new < d[to]) { update = true; d[to] = i >= n-1 ? -PROCON_INF<T>() : d_new; parent[to] = from; } } #pragma GCC diagnostic pop } if(!update) break; } return make_tuple(d, parent); } // SPFA (Shortest Path Faster Algorithm) // // 理論上はベルマンフォードより速いはずだが、実際はそうでもなさげ // 最短距離が負の無限大になる点を全て検出するため 2*n 回ループしている // (一般的な実装の倍の回数。ただし更新がなくなったら打ち切る) // // (d,parent) を返す // d[i]: start から点 i への最短距離(到達不能なら INF, 負の無限大なら -INF) // parent[i]: 最短経路木における点 i の親(start および到達不能な点は -1) template<typename T> tuple<vector<T>,vector<i64>> graph_spfa(const vector<vector<pair<i64,T>>>& g, i64 start) { i64 n = SIZE(g); vector<T> d(n, PROCON_INF<T>()); vector<i64> parent(n, -1); queue<i64> que; BoolArray in_que(n, false); const auto enqueue = [&que,&in_que](i64 v) { que.emplace(v); in_que[v] = true; }; const auto dequeue = [&que,&in_que]() { i64 v = POP(que); in_que[v] = false; return v; }; d[start] = T(0); enqueue(start); REP(i, 2*n) { REP(_, que.size()) { i64 from = dequeue(); for(const auto& p : g[from]) { i64 to,cost; tie(to,cost) = p; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" i64 d_new = d[from] == -PROCON_INF<T>() ? -PROCON_INF<T>() : d[from] + cost; if(d_new < d[to]) { d[to] = i >= n-1 ? -PROCON_INF<T>() : d_new; parent[to] = from; if(!in_que[to]) enqueue(to); } #pragma GCC diagnostic pop } } if(que.empty()) break; } return make_tuple(d, parent); } // ワーシャルフロイド法 // // g は隣接行列 (g[from][to]) で、from == to の場合 0, from != to で辺 // がない場合 INF // // g は全点対間最短距離で上書きされる // (ok,nex) を返す // ok: 負閉路が存在しない場合に限り true // nex[i][j]: i から j へ最短経路で行くとき、次に辿るべき点(到達不能なら -1) template<typename T> tuple<bool,vector<vector<i64>>> graph_floyd(vector<vector<T>>& g) { i64 n = SIZE(g); vector<vector<i64>> nex(n, vector<i64>(n,-1)); #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" REP(i, n) REP(j, n) { if(g[i][j] != PROCON_INF<T>()) nex[i][j] = j; } REP(k, n) { REP(i, n) { if(g[i][k] == PROCON_INF<T>()) continue; REP(j, n) { if(g[k][j] == PROCON_INF<T>()) continue; if(chmin(g[i][j], g[i][k] + g[k][j])) { nex[i][j] = nex[i][k]; } if(i == j && g[i][j] < 0) return make_tuple(false, nex); } } } #pragma GCC diagnostic pop return make_tuple(true, nex); } // TODO: 重みあり/なし両対応 // トポロジカルソート // queue を MinHeap に変えると辞書順最小のものが求まる // // (ok,res) を返す // ok: DAGであったかどうか // res: 結果 tuple<bool,vector<i64>> graph_tsort(const vector<vector<i64>>& g) { i64 n = SIZE(g); vector<i64> res; res.reserve(n); vector<i64> deg_in(n, 0); for(const auto& tos : g) for(auto to : tos) ++deg_in[to]; queue<i64> que; REP(v, n) { if(deg_in[v] == 0) que.emplace(v); } while(!que.empty()) { i64 v = POP(que); res.emplace_back(v); for(auto to : g[v]) { if(--deg_in[to] > 0) continue; que.emplace(to); } } bool ok = SIZE(res) == n; return make_tuple(ok, res); } // TODO: 重みあり/なし両対応 // (関節点リスト,橋リスト) を返す tuple<vector<i64>,vector<pair<i64,i64>>> graph_lowlink(const vector<vector<i64>>& g) { i64 n = SIZE(g); vector<i64> ord(n, -1); vector<i64> low(n, -1); vector<i64> articulations; vector<pair<i64,i64>> bridges; auto dfs = FIX([&g,&ord,&low,&articulations,&bridges](auto&& self, i64 v, i64 parent, i64 k) -> void { low[v] = ord[v] = k; bool arti = false; i64 n_child = 0; for(i64 to : g[v]) { // 親または後退辺 if(ord[to] != -1) { if(to != parent) chmin(low[v], ord[to]); continue; } // 子を辿り、low[v] を更新 ++n_child; self(to, v, k+1); chmin(low[v], low[to]); // 関節点判定(根でない場合) if(parent != -1 && low[to] >= ord[v]) arti = true; // 橋判定 if(low[to] > ord[v]) bridges.emplace_back(minmax(v,to)); } // 関節点判定(根の場合) if(parent == -1 && n_child > 1) arti = true; if(arti) articulations.emplace_back(v); }); dfs(0, -1, 0); return make_tuple(articulations, bridges); } // 各頂点の (indegree,outdegree) のリストを返す (隣接リスト版) vector<pair<i64,i64>> graph_degrees_list(const vector<vector<i64>>& g) { i64 n = SIZE(g); vector<pair<i64,i64>> res(n, {0,0}); REP(from, n) { for(i64 to : g[from]) { ++SND(res[from]); ++FST(res[to]); } } return res; } // 各頂点の (indegree,outdegree) のリストを返す (隣接行列版) vector<pair<i64,i64>> graph_degrees_matrix(const vector<vector<i64>>& g) { i64 n = SIZE(g); vector<pair<i64,i64>> res(n, {0,0}); REP(from, n) REP(to, n) { i64 k = g[from][to]; SND(res[from]) += k; FST(res[to]) += k; } return res; } // グラフのオイラー路 (隣接リスト版) // // g は破壊される // start: 始点 // digraph: 有向グラフか? vector<i64> graph_euler_trail_list(vector<vector<i64>>& g, i64 start, bool digraph) { // スタックオーバーフロー回避のため再帰を使わず自前の stack で処理 enum Action { CALL, RESUME }; vector<i64> res; stack<tuple<Action,i64>> stk; stk.emplace(CALL, start); while(!stk.empty()) { Action act; i64 v; tie(act,v) = POP(stk); switch(act) { case CALL: stk.emplace(RESUME, v); while(!g[v].empty()) { i64 to = g[v].back(); g[v].pop_back(); if(!digraph) g[to].erase(ALL(find, g[to], v)); stk.emplace(CALL, to); } break; case RESUME: res.emplace_back(v); break; default: ASSERT(false); } } ALL(reverse, res); return res; } // 無向グラフのオイラー路 (隣接行列版) // // g[v][w]: v,w 間の辺の本数 (破壊される) // start: 始点 // digraph: 有向グラフか? vector<i64> graph_euler_trail_matrix(vector<vector<i64>>& g, i64 start, bool digraph) { // スタックオーバーフロー回避のため再帰を使わず自前の stack で処理 enum Action { CALL, RESUME }; i64 n = SIZE(g); vector<i64> res; stack<tuple<Action,i64>> stk; stk.emplace(CALL, start); while(!stk.empty()) { Action act; i64 v; tie(act,v) = POP(stk); switch(act) { case CALL: stk.emplace(RESUME, v); REP(to, n) { if(g[v][to] == 0) continue; --g[v][to]; if(!digraph) --g[to][v]; stk.emplace(CALL, to); } break; case RESUME: res.emplace_back(v); break; default: ASSERT(false); } } ALL(reverse, res); return res; } // }}} //-------------------------------------------------------------------- void solve() { i64 N = RD(); i64 M = RD(); auto vert = [](i64 v, i64 k) { return 2*v + k; }; auto G = graph_make_weighted<i64>(2*N); REP(_, M) { i64 a = RD1(); i64 b = RD1(); i64 c = RD(); G[vert(a,0)].emplace_back(vert(b,0), c); G[vert(b,0)].emplace_back(vert(a,0), c); G[vert(a,1)].emplace_back(vert(b,1), c); G[vert(b,1)].emplace_back(vert(a,1), c); G[vert(a,0)].emplace_back(vert(b,1), 0); G[vert(b,0)].emplace_back(vert(a,1), 0); } vector<i64> d1, d2; tie(d1,ignore) = graph_dijkstra(G, vert(0,0)); tie(d2,ignore) = graph_dijkstra(G, vert(0,1)); REP(v, N) { if(v == 0) { PRINTLN(0); continue; } i64 ans = INF; chmin(ans, d1[vert(v,0)] + d2[vert(v,0)]); chmin(ans, d1[vert(v,1)] + d2[vert(v,1)]); PRINTLN(ans); } // * 小さいケースで試した? // * 不可能なケースはチェックした? // * MOD はとった? // * メモ化忘れてない? // * 入出力の 0-based/1-based 確認した? // * 時間/メモリ制限は確認した? // * 違うやつ提出してない? // * 違うやつテストしてない? } signed main() { solve(); EXIT(); }