結果

問題 No.42 貯金箱の溜息
ユーザー PachicobuePachicobue
提出日時 2019-07-01 12:45:30
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 24 ms / 5,000 ms
コード長 10,014 bytes
コンパイル時間 2,249 ms
コンパイル使用メモリ 208,328 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-08 12:23:11
合計ジャッジ時間 2,959 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 20 ms
5,248 KB
testcase_01 AC 23 ms
5,376 KB
testcase_02 AC 24 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wsign-conversion"
#define NDEBUG
#define SHOW(...) static_cast<void>(0)
//!===========================================================!//
//!  dP     dP                          dP                    !//
//!  88     88                          88                    !//
//!  88aaaaa88a .d8888b. .d8888b. .d888b88 .d8888b. 88d888b.  !//
//!  88     88  88ooood8 88'  '88 88'  '88 88ooood8 88'  '88  !//
//!  88     88  88.  ... 88.  .88 88.  .88 88.  ... 88        !//
//!  dP     dP  '88888P' '88888P8 '88888P8 '88888P' dP        !//
//!===========================================================!//
template <typename T>
T read()
{
    T v;
    return std::cin >> v, v;
}
template <typename T>
std::vector<T> readVec(const std::size_t l)
{
    std::vector<T> v(l);
    for (auto& e : v) { std::cin >> e; }
    return v;
}
using ld = long double;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
constexpr unsigned int MOD = 1000000007;
template <typename T>
constexpr T INF = std::numeric_limits<T>::max() / 4;
template <typename F>
constexpr F PI = static_cast<F>(3.1415926535897932385);
std::mt19937 mt{std::random_device{}()};
template <typename T>
bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); }
template <typename T>
bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); }
template <typename T>
std::vector<T> Vec(const std::size_t n, T v) { return std::vector<T>(n, v); }
template <class... Args>
auto Vec(const std::size_t n, Args... args) { return std::vector<decltype(Vec(args...))>(n, Vec(args...)); }
template <typename T>
constexpr T popCount(const T u)
{
#ifdef __has_builtin
    return u == 0 ? T(0) : (T)__builtin_popcountll(u);
#else
    unsigned long long v = static_cast<unsigned long long>(u);
    return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast<T>(v * 0x0101010101010101ULL >> 56 & 0x7f);
#endif
}
template <typename T>
constexpr T log2p1(const T u)
{
#ifdef __has_builtin
    return u == 0 ? T(0) : T(64 - __builtin_clzll(u));
#else
    unsigned long long v = static_cast<unsigned long long>(u);
    return v = static_cast<unsigned long long>(v), v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), popCount(v);
#endif
}
template <typename T>
constexpr T clog(const T v) { return v == 0 ? T(0) : log2p1(v - 1); }
template <typename T>
constexpr T msbp1(const T v) { return log2p1(v); }
template <typename T>
constexpr T lsbp1(const T v)
{
#ifdef __has_builtin
    return __builtin_ffsll(v);
#else
    return v == 0 ? T(0) : popCount((v & (-v)) - T(1)) + T(1);
#endif
}
template <typename T>
constexpr bool ispow2(const T v) { return popCount(v) == 1; }
template <typename T>
constexpr T ceil2(const T v) { return v == 0 ? T(1) : T(1) << log2p1(v - 1); }
template <typename T>
constexpr T floor2(const T v) { return v == 0 ? T(0) : T(1) << (log2p1(v) - 1); }
//!===============================================================!//
//!   88888888b            dP       .88888.   a88888b. 888888ba   !//
//!   88                   88      d8'   '88 d8'   '88 88    '8b  !//
//!  a88aaaa    dP.  .dP d8888P    88        88        88     88  !//
//!   88         '8bd8'    88      88   YP88 88        88     88  !//
//!   88         .d88b.    88      Y8.   .88 Y8.   .88 88    .8P  !//
//!   88888888P dP'  'dP   dP       '88888'   Y88888P' 8888888P   !//
//!===============================================================!//
template <typename T>
constexpr std::pair<T, T> extgcd(const T a, const T b)
{
    if (b == 0) { return std::pair<T, T>{1, 0}; }
    const auto p = extgcd(b, a % b);
    return {p.second, p.first - p.second * (a / b)};
}
template <typename T>
constexpr T inverse(const T a, const T mod) { return (mod + extgcd((mod + a % mod) % mod, mod).first % mod) % mod; }
//!========================================================!//
//!  8888ba.88ba                 dP    dP            dP    !//
//!  88  '8b  '8b                88    88            88    !//
//!  88   88   88 .d8888b. .d888b88    88 88d888b. d8888P  !//
//!  88   88   88 88'  '88 88'  '88    88 88'  '88   88    !//
//!  88   88   88 88.  .88 88.  .88    88 88    88   88    !//
//!  dP   dP   dP '88888P' '88888P8    dP dP    dP   dP    !//
//!========================================================!//
template <uint mod>
class ModInt
{
private:
    uint v;
    static uint norm(const uint& x) { return x < mod ? x : x - mod; }
    static ModInt make(const uint& x)
    {
        ModInt m;
        return m.v = x, m;
    }
    static ModInt power(ModInt x, ll n)
    {
        ModInt ans = 1;
        for (; n; n >>= 1, x *= x) {
            if (n & 1) { ans *= x; }
        }
        return ans;
    }
    static ModInt inv(const ModInt& x) { return ModInt{inverse((ll)x.v, (ll)mod)}; }

public:
    ModInt() : v{0} {}
    ModInt(const ll val) : v{norm(uint(val % (ll)mod + (ll)mod))} {}
    ModInt(const ModInt<mod>& n) : v{n()} {}
    explicit operator bool() const { return v != 0; }
    ModInt<mod>& operator=(const ModInt<mod>& n) { return v = n(), (*this); }
    ModInt<mod>& operator=(const ll val) { return v = norm(uint(val % (ll)mod + (ll)mod)), (*this); }
    ModInt<mod> operator+() const { return *this; }
    ModInt<mod> operator-() const { return make(norm(mod - v)); }
    ModInt<mod> operator+(const ModInt<mod>& val) const { return make(norm(v + val())); }
    ModInt<mod> operator-(const ModInt<mod>& val) const { return make(norm(v + mod - val())); }
    ModInt<mod> operator*(const ModInt<mod>& val) const { return make((uint)((ll)v * val() % (ll)mod)); }
    ModInt<mod> operator/(const ModInt<mod>& val) const { return *this * inv(val()); }
    ModInt<mod>& operator+=(const ModInt<mod>& val) { return *this = *this + val; }
    ModInt<mod>& operator-=(const ModInt<mod>& val) { return *this = *this - val; }
    ModInt<mod>& operator*=(const ModInt<mod>& val) { return *this = *this * val; }
    ModInt<mod>& operator/=(const ModInt<mod>& val) { return *this = *this / val; }
    ModInt<mod> operator+(const ll val) const { return ModInt{v + val}; }
    ModInt<mod> operator-(const ll val) const { return ModInt{v - val}; }
    ModInt<mod> operator*(const ll val) const { return ModInt{(ll)v * (val % mod)}; }
    ModInt<mod> operator/(const ll val) const { return ModInt{(ll)v * inv(val)}; }
    template <typename I>
    ModInt<mod> operator^(const I n) const { return power(v, n); }
    ModInt<mod>& operator+=(const ll val) { return *this = *this + val; }
    ModInt<mod>& operator-=(const ll val) { return *this = *this - val; }
    ModInt<mod>& operator*=(const ll val) { return *this = *this * val; }
    ModInt<mod>& operator/=(const ll val) { return *this = *this / val; }
    template <typename I>
    ModInt<mod>& operator^=(const I n) { return (*this) = ((*this) ^ n); }
    bool operator==(const ModInt<mod>& val) const { return v == val.v; }
    bool operator!=(const ModInt<mod>& val) const { return not(*this == val); }
    bool operator==(const ll val) const { return v == norm(uint((ll)mod + val % (ll)mod)); }
    bool operator!=(const ll val) const { return not(*this == val); }
    uint operator()() const { return v; }
};
template <uint mod>
inline ModInt<mod> operator+(const ll val, const ModInt<mod>& n) { return n + val; }
template <uint mod>
inline ModInt<mod> operator-(const ll val, const ModInt<mod>& n) { return ModInt<mod>{val - (ll)n()}; }
template <uint mod>
inline ModInt<mod> operator*(const ll val, const ModInt<mod>& n) { return n * val; }
template <uint mod>
inline ModInt<mod> operator/(const ll val, const ModInt<mod>& n) { return ModInt<mod>(val) / n; }
template <uint mod>
inline bool operator==(const ll val, const ModInt<mod>& n) { return n == val; }
template <uint mod>
inline bool operator!=(const ll val, const ModInt<mod>& n) { return not(val == n); }
template <uint mod>
inline std::istream& operator>>(std::istream& is, ModInt<mod>& n)
{
    uint v;
    return is >> v, n = v, is;
}
template <uint mod>
std::ostream& operator<<(std::ostream& os, const ModInt<mod>& n) { return (os << n()); }
//!=====================================!//
//!  8888ba.88ba           oo           !//
//!  88  '8b  '8b                       !//
//!  88   88   88 .d8888b. dP 88d888b.  !//
//!  88   88   88 88'  '88 88 88'  '88  !//
//!  88   88   88 88.  .88 88 88    88  !//
//!  dP   dP   dP '88888P8 dP dP    dP  !//
//!=====================================!//
int main()
{
    constexpr uint MOD = 1000000009;
    using mint = ModInt<MOD>;
    constexpr int C[6] = {1, 5, 10, 50, 100, 500};
    using Coeff = std::array<mint, 6>;
    std::array<std::array<Coeff, 500>, 6> F;
    auto eval = [&](const Coeff& a, const int x) -> mint { return a[0] + a[1] * x + a[2] * x * (x - 1) + a[3] * x * (x - 1) * (x - 2) + a[4] * x * (x - 1) * (x - 2) * (x - 3) + a[5] * x * (x - 1) * (x - 2) * (x - 3) * (x - 4); };
    auto comp = [&](const Coeff& f) -> Coeff { return {{f[0], f[1] - f[0], (f[2] - 2 * f[1] + f[0]) / 2, (f[3] - 3 * f[2] + 3 * f[1] - f[0]) / 6, (f[4] - 4 * f[3] + 6 * f[2] - 4 * f[1] + f[0]) / 24, (f[5] - 5 * f[4] + 10 * f[3] - 10 * f[2] + 5 * f[1] - f[0]) / 120}}; };
    F[0][0][0] = 1;
    for (int i = 1; i < 6; i++) {
        for (int l = 0; l < C[i]; l++) {
            Coeff f;
            for (int x = 0; x < 6; x++) {
                f[x] = 0;
                for (int z = 0; z <= x; z++) { f[x] += eval(F[i - 1][l % C[i - 1]], C[i] / C[i - 1] * z + (l / C[i - 1])); }
            }
            F[i][l] = comp(f);
        }
    }
    const int T = read<int>();
    for (int t = 0; t < T; t++) {
        const ll M = read<ll>();
        const mint x = M / C[5];
        const int l = M % C[5];
        std::cout << eval(F[5][l], x()) << std::endl;
    }
    return 0;
}
0