結果

問題 No.848 なかよし旅行
ユーザー ei1333333ei1333333
提出日時 2019-07-05 22:06:15
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 3,575 bytes
コンパイル時間 2,244 ms
コンパイル使用メモリ 214,984 KB
実行使用メモリ 10,620 KB
最終ジャッジ日時 2024-10-06 21:48:28
合計ジャッジ時間 3,986 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 101 ms
10,620 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 2 ms
5,248 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 AC 8 ms
5,248 KB
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 AC 2 ms
5,248 KB
testcase_28 WA -
testcase_29 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = 1e9 + 7;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;


template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename T >
struct edge {
  int src, to;
  T cost;

  edge(int to, T cost) : src(-1), to(to), cost(cost) {}

  edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};

template< typename T >
using Edges = vector< edge< T > >;
template< typename T >
using WeightedGraph = vector< Edges< T > >;
using UnWeightedGraph = vector< vector< int > >;
template< typename T >
using Matrix = vector< vector< T > >;

template< typename T >
vector< T > dijkstra(WeightedGraph< T > &g, int s) {
  const auto INF = numeric_limits< T >::max();
  vector< T > dist(g.size(), INF);

  using Pi = pair< T, int >;
  priority_queue< Pi, vector< Pi >, greater< Pi > > que;
  dist[s] = 0;
  que.emplace(dist[s], s);
  while(!que.empty()) {
    T cost;
    int idx;
    tie(cost, idx) = que.top();
    que.pop();
    if(dist[idx] < cost) continue;
    for(auto &e : g[idx]) {
      auto next_cost = cost + e.cost;
      if(dist[e.to] <= next_cost) continue;
      dist[e.to] = next_cost;
      que.emplace(dist[e.to], e.to);
    }
  }
  return dist;
}


int main() {
  int N, M, P, Q, T;
  cin >> N >> M >> P >> Q >> T;
  --P, --Q;
  WeightedGraph< int64 > g(N);
  for(int i = 0; i < M; i++) {
    int x, y, z;
    cin >> x >> y >> z;
    --x, --y;
    g[x].emplace_back(y, z);
    g[y].emplace_back(x, z);
  }

  auto A = dijkstra(g, 0);
  auto B = dijkstra(g, P);
  auto C = dijkstra(g, Q);

  int64 best = -1;
  for(int i = 0; i < N; i++) {
    for(int j = 0; j < N; j++) {
      // 0-i-P---j--0
      //    ---Q-
      int64 rest = T;
      rest -= A[i];
      rest -= A[0];
      rest -= max(B[P] + B[j], C[Q] + C[j]);
      if(rest >= 0) chmax(best, rest + A[i] + A[0]);
    }
  }

  {
    int64 rest = T - (A[P] + B[Q] + C[0]);
    if(rest >= 0) chmax(best, T);
  }

  cout << best << endl;
}
0