結果

問題 No.847 Divisors of Power
ユーザー hiromi_ayasehiromi_ayase
提出日時 2019-07-05 22:06:34
言語 Java21
(openjdk 21)
結果
TLE  
実行時間 -
コード長 7,113 bytes
コンパイル時間 2,293 ms
コンパイル使用メモリ 92,592 KB
実行使用メモリ 205,516 KB
最終ジャッジ日時 2024-10-06 21:49:20
合計ジャッジ時間 6,250 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 72 ms
43,444 KB
testcase_01 AC 67 ms
38,000 KB
testcase_02 AC 69 ms
38,080 KB
testcase_03 AC 67 ms
38,040 KB
testcase_04 AC 67 ms
37,856 KB
testcase_05 AC 66 ms
37,840 KB
testcase_06 TLE -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import java.util.Arrays;
import java.util.Random;

class FactorL {

  static long[][] factorX(long n, int[] primes) {
    long[][] ret = new long[20][2];
    int rp = 0;
    for (int p : primes) {
      if ((long) p * p > n)
        break;
      int i;
      for (i = 0; n % p == 0; n /= p, i++);
      if (i > 0) {
        ret[rp][0] = p;
        ret[rp][1] = i;
        rp++;
      }
    }
    if (n == 1)
      return Arrays.copyOf(ret, rp);

    // P^2
    long sq = (long) Math.sqrt(n);
    for (long u = Math.max(2, sq - 2); u <= sq + 2; u++) {
      if (u * u == n) {
        ret[rp][0] = u;
        ret[rp][1] = 2;
        rp++;
        return Arrays.copyOf(ret, rp);
      }
    }

    // Prime
    if (doMirrorRabin(n)) {
      ret[rp][0] = n;
      ret[rp][1] = 1;
      rp++;
      return Arrays.copyOf(ret, rp);
    }

    // P*Q
    long f = rho(n);
    if (f == -1)
      throw new ArithmeticException();
    if (f > n / f)
      f = n / f;
    ret[rp][0] = f;
    ret[rp][1] = 1;
    rp++;
    ret[rp][0] = n / f;
    ret[rp][1] = 1;
    rp++;
    return Arrays.copyOf(ret, rp);
  }

  public static long mul(long a, long b, long mod) {
    a %= mod;
    long ret = 0;
    int x = 63 - Long.numberOfLeadingZeros(b);
    for (; x >= 0; x--) {
      ret += ret;
      if (ret >= mod)
        ret -= mod;
      if (b << ~x < 0) {
        ret += a;
        if (ret >= mod)
          ret -= mod;
      }
    }
    return ret;
  }

  public static boolean doMirrorRabin(long n) {
    // int[] P = {2, 7, 61}; // n<4759123141
    int[] P = {2, 3, 5, 7, 11, 13, 17, 19, 23}; // n=long
    int s = Long.numberOfTrailingZeros(n - 1);
    long d = n - 1 >> s;
    outer: for (int a : P) {
      if (a >= n)
        continue;

      long mul = a;
      long ad = 1;
      for (long e = d; e > 0; e >>>= 1) {
        if ((e & 1) == 1)
          ad = mul(ad, mul, n);
        mul = mul(mul, mul, n);
      }
      if (ad == 1)
        continue;

      for (int r = 0; r < s; r++) {
        if (ad == n - 1)
          continue outer;
        ad = mul(ad, ad, n);
      }
      return false;
    }
    return true;
  }

  static long rho(long n) {
    Random gen = new Random();
    for (int u = 0; u < 100; u++) {
      long ran = (gen.nextLong() & Long.MAX_VALUE) % n;
      long x = 2, y = 2, d = 1;
      while (d == 1) {
        x = (mul(x, x, n) + ran) % n;
        y = (mul(y, y, n) + ran) % n;
        y = (mul(y, y, n) + ran) % n;
        d = gcd(Math.abs(x - y), n);
      }
      if (d < n)
        return d;
    }
    return -1;
  }

  public static long gcd(long a, long b) {
    while (b > 0) {
      long c = a;
      a = b;
      b = c % b;
    }
    return a;
  }


  public static int[] sieveEratosthenes(int n) {
    if (n <= 32) {
      int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
      for (int i = 0; i < primes.length; i++) {
        if (n < primes[i]) {
          return Arrays.copyOf(primes, i);
        }
      }
      return primes;
    }

    int u = n + 32;
    double lu = Math.log(u);
    int[] ret = new int[(int) (u / lu + u / lu / lu * 1.5)];
    ret[0] = 2;
    int pos = 1;

    int[] isp = new int[(n + 1) / 32 / 2 + 1];
    int sup = (n + 1) / 32 / 2 + 1;

    int[] tprimes = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
    for (int tp : tprimes) {
      ret[pos++] = tp;
      int[] ptn = new int[tp];
      for (int i = (tp - 3) / 2; i < tp << 5; i += tp)
        ptn[i >> 5] |= 1 << (i & 31);
      for (int i = 0; i < tp; i++) {
        for (int j = i; j < sup; j += tp)
          isp[j] |= ptn[i];
      }
    }

    // 3,5,7
    // 2x+3=n
    int[] magic = {0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10,
        7, 12, 21, 17, 9, 6, 16, 5, 15, 14};
    int h = n / 2;
    for (int i = 0; i < sup; i++) {
      for (int j = ~isp[i]; j != 0; j &= j - 1) {
        int pp = i << 5 | magic[(j & -j) * 0x076be629 >>> 27];
        int p = 2 * pp + 3;
        if (p > n)
          break;
        ret[pos++] = p;
        for (int q = pp; q <= h; q += p)
          isp[q >> 5] |= 1 << (q & 31);
      }
    }

    return Arrays.copyOf(ret, pos);
  }
}


public class Main {


  private static void solve() {
    int n = ni();
    int k = ni();
    int m = ni();

    int[] primes = FactorL.sieveEratosthenes(n);
    long[][] f = FactorL.factorX(n, primes);
    for (long[] v : f) {
      v[1] *= k;
    }
    int ret = dfs(1, 0, f, m);
    System.out.println(ret);
  }

  private static int dfs(long now, int k, long[][] f, long m) {
    if (now > m) {
      return 0;
    } else if (k == f.length) {
      return 1;
    }

    int ret = 0;
    for (int i = 0; i <= f[k][1]; i++) {
      ret += dfs(now, k + 1, f, m);
      now *= f[k][0];
      if (now > m) break;
    }
    return ret;
  }

  public static void main(String[] args) {
    new Thread(null, new Runnable() {
      @Override
      public void run() {
        long start = System.currentTimeMillis();
        String debug = args.length > 0 ? args[0] : null;
        if (debug != null) {
          try {
            is = java.nio.file.Files.newInputStream(java.nio.file.Paths.get(debug));
          } catch (Exception e) {
            throw new RuntimeException(e);
          }
        }
        reader = new java.io.BufferedReader(new java.io.InputStreamReader(is), 32768);
        solve();
        out.flush();
        tr((System.currentTimeMillis() - start) + "ms");
      }
    }, "", 64000000).start();
  }

  private static java.io.InputStream is = System.in;
  private static java.io.PrintWriter out = new java.io.PrintWriter(System.out);
  private static java.util.StringTokenizer tokenizer = null;
  private static java.io.BufferedReader reader;

  public static String next() {
    while (tokenizer == null || !tokenizer.hasMoreTokens()) {
      try {
        tokenizer = new java.util.StringTokenizer(reader.readLine());
      } catch (Exception e) {
        throw new RuntimeException(e);
      }
    }
    return tokenizer.nextToken();
  }

  private static double nd() {
    return Double.parseDouble(next());
  }

  private static long nl() {
    return Long.parseLong(next());
  }

  private static int[] na(int n) {
    int[] a = new int[n];
    for (int i = 0; i < n; i++)
      a[i] = ni();
    return a;
  }

  private static char[] ns() {
    return next().toCharArray();
  }

  private static long[] nal(int n) {
    long[] a = new long[n];
    for (int i = 0; i < n; i++)
      a[i] = nl();
    return a;
  }

  private static int[][] ntable(int n, int m) {
    int[][] table = new int[n][m];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        table[i][j] = ni();
      }
    }
    return table;
  }

  private static int[][] nlist(int n, int m) {
    int[][] table = new int[m][n];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        table[j][i] = ni();
      }
    }
    return table;
  }

  private static int ni() {
    return Integer.parseInt(next());
  }

  private static void tr(Object... o) {
    if (is != System.in)
      System.out.println(java.util.Arrays.deepToString(o));
  }
}
0