結果
問題 | No.847 Divisors of Power |
ユーザー | hiromi_ayase |
提出日時 | 2019-07-05 22:09:29 |
言語 | Java (openjdk 23) |
結果 |
AC
|
実行時間 | 101 ms / 2,000 ms |
コード長 | 7,119 bytes |
コンパイル時間 | 2,439 ms |
コンパイル使用メモリ | 92,684 KB |
実行使用メモリ | 40,792 KB |
最終ジャッジ日時 | 2024-10-06 21:59:14 |
合計ジャッジ時間 | 6,248 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 91 ms
40,560 KB |
testcase_01 | AC | 88 ms
40,552 KB |
testcase_02 | AC | 94 ms
40,636 KB |
testcase_03 | AC | 86 ms
40,560 KB |
testcase_04 | AC | 86 ms
40,172 KB |
testcase_05 | AC | 97 ms
40,272 KB |
testcase_06 | AC | 97 ms
40,632 KB |
testcase_07 | AC | 91 ms
40,436 KB |
testcase_08 | AC | 92 ms
40,648 KB |
testcase_09 | AC | 88 ms
40,564 KB |
testcase_10 | AC | 86 ms
40,604 KB |
testcase_11 | AC | 88 ms
40,744 KB |
testcase_12 | AC | 88 ms
40,792 KB |
testcase_13 | AC | 95 ms
40,580 KB |
testcase_14 | AC | 95 ms
40,272 KB |
testcase_15 | AC | 101 ms
40,696 KB |
testcase_16 | AC | 88 ms
40,628 KB |
testcase_17 | AC | 88 ms
40,412 KB |
testcase_18 | AC | 89 ms
40,620 KB |
testcase_19 | AC | 93 ms
40,604 KB |
testcase_20 | AC | 91 ms
40,632 KB |
testcase_21 | AC | 95 ms
40,680 KB |
testcase_22 | AC | 87 ms
40,748 KB |
testcase_23 | AC | 93 ms
40,412 KB |
testcase_24 | AC | 94 ms
40,752 KB |
testcase_25 | AC | 86 ms
40,700 KB |
testcase_26 | AC | 86 ms
40,668 KB |
testcase_27 | AC | 96 ms
40,384 KB |
testcase_28 | AC | 91 ms
40,632 KB |
testcase_29 | AC | 98 ms
40,668 KB |
ソースコード
import java.util.Arrays; import java.util.Random; class FactorL { static long[][] factorX(long n, int[] primes) { long[][] ret = new long[20][2]; int rp = 0; for (int p : primes) { if ((long) p * p > n) break; int i; for (i = 0; n % p == 0; n /= p, i++); if (i > 0) { ret[rp][0] = p; ret[rp][1] = i; rp++; } } if (n == 1) return Arrays.copyOf(ret, rp); // P^2 long sq = (long) Math.sqrt(n); for (long u = Math.max(2, sq - 2); u <= sq + 2; u++) { if (u * u == n) { ret[rp][0] = u; ret[rp][1] = 2; rp++; return Arrays.copyOf(ret, rp); } } // Prime if (doMirrorRabin(n)) { ret[rp][0] = n; ret[rp][1] = 1; rp++; return Arrays.copyOf(ret, rp); } // P*Q long f = rho(n); if (f == -1) throw new ArithmeticException(); if (f > n / f) f = n / f; ret[rp][0] = f; ret[rp][1] = 1; rp++; ret[rp][0] = n / f; ret[rp][1] = 1; rp++; return Arrays.copyOf(ret, rp); } public static long mul(long a, long b, long mod) { a %= mod; long ret = 0; int x = 63 - Long.numberOfLeadingZeros(b); for (; x >= 0; x--) { ret += ret; if (ret >= mod) ret -= mod; if (b << ~x < 0) { ret += a; if (ret >= mod) ret -= mod; } } return ret; } public static boolean doMirrorRabin(long n) { // int[] P = {2, 7, 61}; // n<4759123141 int[] P = {2, 3, 5, 7, 11, 13, 17, 19, 23}; // n=long int s = Long.numberOfTrailingZeros(n - 1); long d = n - 1 >> s; outer: for (int a : P) { if (a >= n) continue; long mul = a; long ad = 1; for (long e = d; e > 0; e >>>= 1) { if ((e & 1) == 1) ad = mul(ad, mul, n); mul = mul(mul, mul, n); } if (ad == 1) continue; for (int r = 0; r < s; r++) { if (ad == n - 1) continue outer; ad = mul(ad, ad, n); } return false; } return true; } static long rho(long n) { Random gen = new Random(); for (int u = 0; u < 100; u++) { long ran = (gen.nextLong() & Long.MAX_VALUE) % n; long x = 2, y = 2, d = 1; while (d == 1) { x = (mul(x, x, n) + ran) % n; y = (mul(y, y, n) + ran) % n; y = (mul(y, y, n) + ran) % n; d = gcd(Math.abs(x - y), n); } if (d < n) return d; } return -1; } public static long gcd(long a, long b) { while (b > 0) { long c = a; a = b; b = c % b; } return a; } public static int[] sieveEratosthenes(int n) { if (n <= 32) { int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}; for (int i = 0; i < primes.length; i++) { if (n < primes[i]) { return Arrays.copyOf(primes, i); } } return primes; } int u = n + 32; double lu = Math.log(u); int[] ret = new int[(int) (u / lu + u / lu / lu * 1.5)]; ret[0] = 2; int pos = 1; int[] isp = new int[(n + 1) / 32 / 2 + 1]; int sup = (n + 1) / 32 / 2 + 1; int[] tprimes = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31}; for (int tp : tprimes) { ret[pos++] = tp; int[] ptn = new int[tp]; for (int i = (tp - 3) / 2; i < tp << 5; i += tp) ptn[i >> 5] |= 1 << (i & 31); for (int i = 0; i < tp; i++) { for (int j = i; j < sup; j += tp) isp[j] |= ptn[i]; } } // 3,5,7 // 2x+3=n int[] magic = {0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14}; int h = n / 2; for (int i = 0; i < sup; i++) { for (int j = ~isp[i]; j != 0; j &= j - 1) { int pp = i << 5 | magic[(j & -j) * 0x076be629 >>> 27]; int p = 2 * pp + 3; if (p > n) break; ret[pos++] = p; for (int q = pp; q <= h; q += p) isp[q >> 5] |= 1 << (q & 31); } } return Arrays.copyOf(ret, pos); } } public class Main { private static void solve() { int n = ni(); int k = ni(); int m = ni(); int[] primes = FactorL.sieveEratosthenes(1000000); long[][] f = FactorL.factorX(n, primes); for (long[] v : f) { v[1] *= k; } int ret = dfs(1, 0, f, m); System.out.println(ret); } private static int dfs(long now, int k, long[][] f, long m) { if (now > m) { return 0; } else if (k == f.length) { return 1; } int ret = 0; for (int i = 0; i <= f[k][1]; i++) { ret += dfs(now, k + 1, f, m); now *= f[k][0]; if (now > m) break; } return ret; } public static void main(String[] args) { new Thread(null, new Runnable() { @Override public void run() { long start = System.currentTimeMillis(); String debug = args.length > 0 ? args[0] : null; if (debug != null) { try { is = java.nio.file.Files.newInputStream(java.nio.file.Paths.get(debug)); } catch (Exception e) { throw new RuntimeException(e); } } reader = new java.io.BufferedReader(new java.io.InputStreamReader(is), 32768); solve(); out.flush(); tr((System.currentTimeMillis() - start) + "ms"); } }, "", 64000000).start(); } private static java.io.InputStream is = System.in; private static java.io.PrintWriter out = new java.io.PrintWriter(System.out); private static java.util.StringTokenizer tokenizer = null; private static java.io.BufferedReader reader; public static String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new java.util.StringTokenizer(reader.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } private static double nd() { return Double.parseDouble(next()); } private static long nl() { return Long.parseLong(next()); } private static int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private static char[] ns() { return next().toCharArray(); } private static long[] nal(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nl(); return a; } private static int[][] ntable(int n, int m) { int[][] table = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { table[i][j] = ni(); } } return table; } private static int[][] nlist(int n, int m) { int[][] table = new int[m][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { table[j][i] = ni(); } } return table; } private static int ni() { return Integer.parseInt(next()); } private static void tr(Object... o) { if (is != System.in) System.out.println(java.util.Arrays.deepToString(o)); } }