結果
問題 | No.847 Divisors of Power |
ユーザー |
|
提出日時 | 2019-07-05 22:59:06 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,634 bytes |
コンパイル時間 | 2,275 ms |
コンパイル使用メモリ | 205,892 KB |
最終ジャッジ日時 | 2025-01-07 06:06:18 |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 24 TLE * 2 |
ソースコード
#include <bits/stdc++.h>#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) begin(x), end(x)using ll = long long;using namespace std;/*** @note O(\sqrt{n})* @note about 1.0 sec for 10^5 queries with n < 10^10*/struct prepared_primes {int size;vector<int> sieve;vector<int> primes;prepared_primes(int size_): size(size_) {sieve.resize(size);REP3 (p, 2, size) if (sieve[p] == 0) {primes.push_back(p);for (int k = p; k < size; k += p) {if (sieve[k] == 0) {sieve[k] = p;}}}}vector<ll> prime_factorize(ll n) {assert (1 <= n and n < (ll)size * size);vector<ll> result;// trial division for large partfor (int p : primes) {if (n < size or n < (ll)p * p) {break;}while (n % p == 0) {n /= p;result.push_back(p);}}// small partif (n == 1) {// nop} else if (n < size) {while (n != 1) {result.push_back(sieve[n]);n /= sieve[n];}} else {result.push_back(n);}assert (is_sorted(ALL(result)));return result;}vector<ll> list_all_factors(ll n) {auto p = prime_factorize(n);vector<ll> d;d.push_back(1);for (int l = 0; l < p.size(); ) {int r = l + 1;while (r < p.size() and p[r] == p[l]) ++ r;int n = d.size();REP (k1, r - l) {REP (k2, n) {d.push_back(d[d.size() - n] * p[l]);}}l = r;}return d;}};int solve(int n, int k, int m) {prepared_primes primes(sqrt(n) + 100);auto factors = primes.list_all_factors(n);unordered_set<int> cur, prv;cur.insert(1);while (k -- and cur.size() != prv.size()) {cur.swap(prv);cur.clear();for (int d1 : prv) for (int d2 : factors) {if ((ll)d1 * d2 <= m) {cur.insert(d1 * d2);}}}return cur.size();}int main() {int n, k, m; cin >> n >> k >> m;cout << solve(n, k, m) << endl;return 0;}