結果

問題 No.847 Divisors of Power
ユーザー FF256grhyFF256grhy
提出日時 2019-07-06 08:30:44
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 38 ms / 2,000 ms
コード長 2,389 bytes
コンパイル時間 1,970 ms
コンパイル使用メモリ 177,128 KB
実行使用メモリ 10,096 KB
最終ジャッジ日時 2024-10-06 23:40:56
合計ジャッジ時間 2,887 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 31 ms
8,624 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
testcase_18 AC 2 ms
5,248 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 10 ms
5,376 KB
testcase_22 AC 2 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 38 ms
10,096 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
testcase_27 AC 2 ms
5,248 KB
testcase_28 AC 2 ms
5,248 KB
testcase_29 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long   signed int LL;
typedef long long unsigned int LU;
#define incID(i, l, r) for(LL i = (l)    ; i <  (r); ++i)
#define incII(i, l, r) for(LL i = (l)    ; i <= (r); ++i)
#define decID(i, l, r) for(LL i = (r) - 1; i >= (l); --i)
#define decII(i, l, r) for(LL i = (r)    ; i >= (l); --i)
#define inc(i, n)  incID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec(i, n)  decID(i, 0, n)
#define dec1(i, n) decII(i, 1, n)
#define inID(v, l, r) ((l) <= (v) && (v) <  (r))
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define  ALL(v)  v.begin(),  v.end()
#define RALL(v) v.rbegin(), v.rend()
template<typename T> bool setmin  (T & a, T b) { if(b <  a) { a = b; return true; } else { return false; } }
template<typename T> bool setmax  (T & a, T b) { if(b >  a) { a = b; return true; } else { return false; } }
template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } }
template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } }
LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; }
LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }
LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }
template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
#define bit(b, i) (((b) >> (i)) & 1)
#define BC __builtin_popcountll
#define SC static_cast
#define SI(v) SC<int>(v.size())
#define SL(v) SC<LL >(v.size())
#define RF(e, v) for(auto & e: v)
#define ef else if
#define UR assert(false)

// ---- ----

vector<pair<LL, LL>> prime_factorization(LL x) {
	assert(x > 0);
	vector<pair<LL, LL>> f;
	for(LL i = 2; i <= x; i++) {
		if(i * i > x) { i = x; }
		if(x % i == 0) {
			f.EB(i, 0);
			while(x % i == 0) { f.back().SE++; x /= i; }
		}
	}
	return f;
}

LL n, k, m;

int main() {
	cin >> n >> k >> m;
	
	auto f = prime_factorization(n);
	
	set<LL> se = { 1 };
	RF(p, f) {
		vector<LL> v;
		RF(e, se) {
			LL w = e;
			inc(i, p.SE * k) {
				w *= p.FI;
				if(w <= m) { v.PB(w); } else { break; }
			}
		}
		se.insert(ALL(v));
	}
	
	cout << SI(se) << endl;
	
	return 0;
}
0