結果
| 問題 | No.502 階乗を計算するだけ |
| コンテスト | |
| ユーザー |
guricerin
|
| 提出日時 | 2019-07-07 10:03:53 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 9,093 bytes |
| 記録 | |
| コンパイル時間 | 14,773 ms |
| コンパイル使用メモリ | 403,448 KB |
| 実行使用メモリ | 796,816 KB |
| 最終ジャッジ日時 | 2024-10-04 03:23:02 |
| 合計ジャッジ時間 | 16,704 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 32 RE * 2 MLE * 1 -- * 17 |
コンパイルメッセージ
warning: field `invfact` is never read
--> src/main.rs:264:9
|
262 | pub struct BiCoef {
| ------ field in this struct
263 | fact: Vec<ModInt>,
264 | invfact: Vec<ModInt>,
| ^^^^^^^
|
= note: `#[warn(dead_code)]` on by default
warning: methods `invfact`, `perm`, `comb`, and `multi_comb` are never used
--> src/main.rs:298:16
|
267 | impl BiCoef {
| ----------- methods in this implementation
...
298 | pub fn invfact(&self, n: usize) -> ModInt {
| ^^^^^^^
...
308 | pub fn perm(&self, n: i64, r: i64) -> ModInt {
| ^^^^
...
318 | pub fn comb(&self, n: i64, r: i64) -> ModInt {
| ^^^^
...
328 | pub fn multi_comb(&self, n: i64, r: i64) -> ModInt {
| ^^^^^^^^^^
ソースコード
// Original: https://github.com/tanakh/competitive-rs
#[allow(unused_macros)]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
let mut next = || { iter.next().unwrap() };
input_inner!{next, $($r)*}
};
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
#[allow(unused_macros)]
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
($next:expr, mut $var:ident : $t:tt $($r:tt)*) => {
let mut $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
#[allow(unused_macros)]
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, [ $t:tt ]) => {
{
let len = read_value!($next, usize);
(0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
}
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, bytes) => {
read_value!($next, String).into_bytes()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
#[allow(dead_code)]
fn chmin<T>(x: &mut T, y: T) -> bool
where
T: PartialOrd + Copy,
{
*x > y && {
*x = y;
true
}
}
#[allow(dead_code)]
fn chmax<T>(x: &mut T, y: T) -> bool
where
T: PartialOrd + Copy,
{
*x < y && {
*x = y;
true
}
}
mod mod_int {
use std::ops::*;
pub trait Mod: Copy {
fn m() -> i64;
}
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> {
pub val: i64,
phantom: std::marker::PhantomData<M>,
}
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(val: i64) -> Self {
ModInt::new_internal(val % M::m())
}
fn new_internal(val: i64) -> Self {
ModInt {
val: val,
phantom: std::marker::PhantomData,
}
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 {
sum *= cur;
}
cur *= cur;
e /= 2;
}
sum
}
// mod m における self.val の逆元
#[allow(dead_code)]
pub fn inv(self) -> Self {
self.pow(M::m() - 2)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.val + other.val;
if sum >= M::m() {
sum -= M::m();
}
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.val - other.val;
if sum < 0 {
sum += M::m();
}
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self {
ModInt::new_internal(self.val * other.into().val % M::m())
}
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) {
*self = *self + other;
}
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) {
*self = *self - other;
}
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) {
*self = *self * other;
}
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self {
ModInt::new(0) - self
}
}
impl<M: Mod> std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
self.val.fmt(f)
}
}
impl<M: Mod> std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let (mut a, mut b, _) = red(self.val, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(val: i64) -> Self {
Self::new(val)
}
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name {
fn m() -> i64 {
$modulo
}
}
};
}
const MOD: i64 = 1e9 as i64 + 7;
define_mod!(P, MOD);
type ModInt = mod_int::ModInt<P>;
mod mod_comb {
use super::ModInt;
pub struct BiCoef {
fact: Vec<ModInt>,
invfact: Vec<ModInt>,
}
impl BiCoef {
pub fn new(n: usize) -> Self {
let mut fact: Vec<ModInt> = vec![1.into(); n + 1];
let mut invfact: Vec<ModInt> = vec![1.into(); n + 1];
for i in 0..n {
fact[i + 1] = fact[i] * ModInt::new(i as i64 + 1);
}
invfact[n] = fact[n].inv();
for i in (0..n).rev() {
invfact[i] = invfact[i + 1] * ModInt::new(i as i64 + 1);
}
BiCoef {
fact: fact,
invfact: invfact,
}
}
pub fn fact(&self, n: usize) -> ModInt {
if let Some(x) = self.fact.get(n) {
*x
} else if n >= super::MOD as usize {
ModInt::new(0)
} else {
let mut res = 1.into();
for i in 1..(n + 1) {
res *= ModInt::new(i as i64 + 1);
}
res
}
}
pub fn invfact(&self, n: usize) -> ModInt {
if let Some(x) = self.invfact.get(n as usize) {
*x
} else {
self.fact(n).inv()
}
}
#[doc = " `nPr = n! / (n - r)!`"]
#[doc = ""]
#[doc = " `O(1)` if n and r are smaller than input in `new` method."]
pub fn perm(&self, n: i64, r: i64) -> ModInt {
if n >= r {
self.fact(n as usize) * self.invfact((n - r) as usize)
} else {
0.into()
}
}
#[doc = " `nCr = n! / (n - r)! / r!`."]
#[doc = ""]
#[doc = " `O(1)` if n and r are smaller than input in `new` method."]
pub fn comb(&self, n: i64, r: i64) -> ModInt {
if n >= r {
self.fact(n as usize) * self.invfact((n - r) as usize) * self.invfact(r as usize)
} else {
ModInt::from(0)
}
}
#[doc = " `(n + k - 1)! / k!`."]
#[doc = ""]
#[doc = " `O(1)` if n and r are smaller than input in `new` method."]
pub fn multi_comb(&self, n: i64, r: i64) -> ModInt {
if r == 0 {
ModInt::from(1)
} else {
self.comb(n + r - 1, r)
}
}
}
}
#[allow(unused_imports)]
use std::cmp::{max, min};
#[allow(unused_imports)]
use std::collections::{BTreeMap, BTreeSet, BinaryHeap, VecDeque};
fn main() {
input!(n: usize);
use mod_comb::*;
let bi = BiCoef::new(n);
println!("{}", bi.fact(n));
}
guricerin