結果
問題 | No.847 Divisors of Power |
ユーザー | 👑 obakyan |
提出日時 | 2019-07-07 12:45:44 |
言語 | Lua (LuaJit 2.1.1696795921) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,723 bytes |
コンパイル時間 | 151 ms |
コンパイル使用メモリ | 5,248 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-07 00:53:54 |
合計ジャッジ時間 | 6,038 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 4 ms
5,248 KB |
testcase_11 | AC | 3 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 4 ms
5,248 KB |
testcase_14 | AC | 4 ms
5,248 KB |
testcase_15 | AC | 1,820 ms
5,248 KB |
testcase_16 | AC | 3 ms
5,248 KB |
testcase_17 | AC | 3 ms
5,248 KB |
testcase_18 | AC | 4 ms
5,248 KB |
testcase_19 | AC | 4 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 612 ms
5,248 KB |
testcase_22 | AC | 3 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | TLE | - |
testcase_25 | AC | 3 ms
5,248 KB |
testcase_26 | AC | 3 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 3 ms
5,248 KB |
testcase_29 | AC | 3 ms
5,248 KB |
ソースコード
local mce, mfl, msq, mmi, mma = math.ceil, math.floor, math.sqrt, math.min, math.max local function getprimes(x) local primes = {} local allnums = {} for i = 1, x do allnums[i] = true end for i = 2, x do if(allnums[i]) then table.insert(primes, i) local lim = mfl(x / i) for j = 2, lim do allnums[j * i] = false end end end return primes end local function getdivisorparts(x, primes) local prime_num = #primes local low, high = {}, {} local lim = mce(msq(x)) local primepos = 1 local dv = primes[primepos] while(primepos <= prime_num and dv <= lim) do if(x % dv == 0) then local asdf = {} asdf.p = dv asdf.cnt = 1 x = x / dv while(x % dv == 0) do x = x / dv asdf.cnt = asdf.cnt + 1 end if asdf.p <= 5 then table.insert(low, asdf) else table.insert(high, asdf) end lim = mce(msq(x)) end if(primepos == prime_num) then break end primepos = primepos + 1 dv = primes[primepos] end if(x ~= 1) then local asdf = {} asdf.p, asdf.cnt = x, 1 table.insert(high, asdf) end return low, high end local function getdivisor(divisorparts, max) local t = {} local pat = 1 local len = #divisorparts local allpat = 1 for i = 1, len do allpat = allpat * (1 + divisorparts[i].cnt) end for t_i_pat = 0, allpat - 1 do local div = allpat local i_pat = t_i_pat local ret = 1 for i = 1, len do div = mfl(div / (divisorparts[i].cnt + 1)) local mul = mfl(i_pat / div) i_pat = i_pat % div for j = 1, mul do ret = ret * divisorparts[i].p if max < ret then break end end end if ret <= max then table.insert(t, ret) end end -- table.sort(t) return t end local n, k, m = io.read("*n", "*n", "*n") local primes = getprimes(31623) local dlow, dhigh = getdivisorparts(n, primes) for i = 1, #dlow do local c = dlow[i].cnt * k local p = dlow[i].p local r = 1 for j = 1, c do r = r * p if m < r then c = mma(1, j - 1) break end end dlow[i].cnt = c end for i = 1, #dhigh do local c = dhigh[i].cnt * k local p = dhigh[i].p local r = 1 for j = 1, c do r = r * p if m < r then c = mma(1, j - 1) break end end dhigh[i].dcnt = c end local lows = getdivisor(dlow, m) local tot = 0 for j = 1, #lows do local relmax = mfl(m / lows[j]) for i = 1, #dhigh do local c = dhigh[i].dcnt local p = dhigh[i].p local r = 1 for j = 1, c do r = r * p if relmax < r then c = mma(1, j - 1) break end end dhigh[i].cnt = c end local ret = getdivisor(dhigh, relmax) tot = tot + #ret end print(tot)