結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
qqqq
|
| 提出日時 | 2019-07-08 17:17:57 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 345 ms / 5,000 ms |
| コード長 | 1,418 bytes |
| コンパイル時間 | 449 ms |
| コンパイル使用メモリ | 82,240 KB |
| 実行使用メモリ | 78,080 KB |
| 最終ジャッジ日時 | 2024-10-08 22:29:26 |
| 合計ジャッジ時間 | 7,848 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
mod = 10**9+7
k, n = map(int, input().split())
a = list(map(int, input().split()))
# 累積和
if n <= 10**6:
aa = [0]*n
# 1-indexed
s = [0]*(n+1)
for i in range(k):
aa[i] = a[i]
s[i+1] = s[i] + a[i]
for i in range(k, n):
ai = s[i] - s[i-k]
aa[i] = ai
aa[i] %= mod
s[i+1] = s[i] + ai
s[i+1] %= mod
print(aa[-1], s[-1])
# 行列累乗
else:
def mul(a, b):
n = len(a)
c = [[0]*n for i in range(n)]
for i in range(n):
for j in range(n):
for k in range(n):
c[i][j] += (a[i][k]*b[k][j])%mod
return c
def pow(a, n):
b = [[0]*len(a) for i in range(len(a))]
for i in range(len(a)):
b[i][i] = 1
while n:
if n&1:
b = mul(a, b)
a = mul(a, a)
n >>=1
return b
A = [[0]*k for i in range(k)]
A[0] = [1]*k
for i in range(k-1):
A[i+1][i] = 1
A = pow(A, n-k)
f = 0
for i in range(k):
f += A[0][i]*a[k-i-1]
f %= mod
B = [[0]*(k+1) for i in range(k+1)]
B[0][0] = 2
B[0][-1] = -1
for i in range(k):
B[i+1][i] = 1
B = pow(B, n-k)
from itertools import accumulate
s = [0] + list(accumulate(a))
g = 0
for i in range(k+1):
g += B[0][i]*s[k-i]
g %= mod
print(f, g)
qqqq