結果
問題 | No.8046 yukicoderの過去問 |
ユーザー | hashiryo |
提出日時 | 2019-07-08 23:51:59 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,641 bytes |
コンパイル時間 | 2,595 ms |
コンパイル使用メモリ | 182,016 KB |
実行使用メモリ | 34,600 KB |
最終ジャッジ日時 | 2024-10-09 19:51:08 |
合計ジャッジ時間 | 9,114 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
ソースコード
#include<bits/stdc++.h> #define debug(x) cerr << #x << ": " << x << endl #define debugArray(x,n) for(long long hoge = 0; (hoge) < (n); ++ (hoge)) cerr << #x << "[" << hoge << "]: " << x[hoge] << endl using namespace std; typedef long long ll; typedef unsigned long long ull; typedef vector<ll> vll; const ll INF = LLONG_MAX/2; const ll MOD = 1e9+7; ll add(ll a, ll b, ll M) { // a + b (mod M) return (a += b) >= M ? a - M : a; } ll sub(ll a, ll b, ll M) { // a - b (mod M) return (a -= b) < 0 ? a + M : a; } ll mul(ll a, ll b, ll M) { // a * b (mod M) ll r = a*b - (ll)((long double)(a)*b/M+.5)*M; return r < 0 ? r + M: r; } ll div(ll a, ll b, ll M) { // solve b x == a (mod M) ll u = 1, x = 0, s = b, t = M; while (s) { // extgcd for b x + M s = t ll q = t / s; swap(x -= u * q, u); swap(t -= s * q, s); } if (a % t) return -1; // infeasible return mul(x < 0 ? x + M : x, a / t, M); // b (xa/t) == a (mod M) } ll pow(ll a, ll b, ll M) { ll x = 1; for (; b > 0; b >>= 1) { if (b & 1) x = (a * x) % M; a = (a * a) % M; } return x; } // p(x) = p[0] + p[1] x + ... + p[n-1] x^n-1 // assertion: p.back() != 0 typedef vector<ll> poly; ostream& operator<<(ostream &os, const poly &p) { bool head = true; for (size_t i = 0; i < p.size(); ++i) { if (p[i] == 0) continue; if (!head) os << " + "; os << p[i]; head = false; if (i >= 1) os << " x"; if (i >= 2) os << "^" << i; } return os; } poly add(poly p, const poly &q, ll M) { if (p.size() < q.size()) p.resize(q.size()); for (size_t i = 0; i < q.size(); ++i) p[i] = add(p[i], q[i], M); while (!p.empty() && !p.back()) p.pop_back(); return p; } poly sub(poly p, const poly &q, ll M) { if (p.size() < q.size()) p.resize(q.size()); for (size_t i = 0; i < q.size(); ++i) p[i] = sub(p[i], q[i], M); while (!p.empty() && !p.back()) p.pop_back(); return p; } // FFT-based multiplication: this works correctly for M in [int] // assume: size of a/b is power of two, mod is predetermined template <int mod, int sign> void fmt(vector<ll>& x) { const int n = x.size(); int h = pow(3, (mod-1)/n, mod); if (sign < 0) h = div(1, h, mod); for (int i = 0, j = 1; j < n-1; ++j) { for (int k = n >> 1; k > (i ^= k); k >>= 1); if (j < i) swap(x[i], x[j]); } for (int m = 1; m < n; m *= 2) { ll w = 1, wk = pow(h, n / (2*m), mod); for (int i = 0; i < m; ++i) { for (int s = i; s < n; s += 2*m) { ll u = x[s], d = x[s + m] * w % mod; if ((x[s] = u + d) >= mod) x[s] -= mod; if ((x[s + m] = u - d) < 0) x[s + m] += mod; } w = w * wk % mod; } } if (sign < 0) { ll inv = div(1, n, mod); for (auto &a: x) a = a * inv % mod; } } // assume: size of a/b is power of two, mod is predetermined template <int mod> vector<ll> conv(vector<ll> a, vector<ll> b){ fmt<mod,+1>(a); fmt<mod,+1>(b); for (size_t i = 0; i < a.size(); ++i) a[i] = a[i] * b[i] % mod; fmt<mod,-1>(a); return a; } // general convolution where mod < 2^31. vector<ll> conv(vector<ll> a, vector<ll> b, ll mod){ int n = a.size() + b.size() - 1; for (int k: {1,2,4,8,16}) n |= (n >> k); ++n; a.resize(n); b.resize(n); const int A = 167772161, B = 469762049, C = 1224736769, D = (ll)(A) * B % mod; vector<ll> x = conv<A>(a,b), y = conv<B>(a,b), z = conv<C>(a,b); for (size_t i = 0; i < x.size(); ++i) { ll X = (y[i] - x[i]) * 104391568; if ((X %= B) < 0) X += B; ll Y = (z[i] - (x[i] + A * X) % C) * 721017874; if ((Y %= C) < 0) Y += C; x[i] += A * X + D * Y; if ((x[i] %= mod) < 0) x[i] += mod; } x.resize(n); return x; } poly mul(poly p, poly q, ll M) { poly pq = conv(p, q, M); pq.resize(p.size() + q.size() - 1); while (!pq.empty() && !pq.back()) pq.pop_back(); return pq; } poly inv(poly f,ll M){ poly t = {div(1, f[0], M)}; if (t[0] < 0) return { {}, {} }; // infeasible for (size_t k = 1; k <= 2*(f.size()+1); k *= 2) { poly s = mul(mul(t, f, M), t, M); t.resize(k); for (size_t i = 0; i < k; ++i) t[i] = sub(2*t[i], s[i], M); } return t; } signed main(){ cin.tie(0); ios::sync_with_stdio(false); ll K;cin>>K; ll N;cin>>N; poly f(1<<17,0); for(ll i=0;i<N;i++){ ll x;cin>>x; f[x]=MOD-1; } f[0]=1; auto g=inv(f,MOD); cout<<g[K]<<endl; return 0; }