結果
問題 | No.650 行列木クエリ |
ユーザー | tsutaj |
提出日時 | 2019-07-11 01:22:34 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,151 ms / 2,000 ms |
コード長 | 14,497 bytes |
コンパイル時間 | 3,052 ms |
コンパイル使用メモリ | 130,632 KB |
実行使用メモリ | 95,872 KB |
最終ジャッジ日時 | 2024-11-06 18:07:06 |
合計ジャッジ時間 | 9,598 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 787 ms
24,576 KB |
testcase_02 | AC | 1,111 ms
90,256 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 789 ms
24,576 KB |
testcase_05 | AC | 1,151 ms
90,388 KB |
testcase_06 | AC | 3 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 439 ms
25,728 KB |
testcase_09 | AC | 663 ms
95,872 KB |
testcase_10 | AC | 2 ms
6,820 KB |
ソースコード
#include <iostream> #include <cstdio> #include <vector> #include <algorithm> #include <functional> #include <tuple> #include <cassert> using namespace std; // HL 分解 // 頂点 v を根とする部分木: [ in[v], out[v] ) // 頂点 v から見た heavy edge chain の頭: head[v] struct HLD { vector< vector<int> > G; vector<int> sub, par, depth, in, out, rev, head; void dfs_sub(int cur) { for(auto& to : G[cur]) { if(par[cur] == to) continue; par[to] = cur; depth[to] = depth[cur] + 1; dfs_sub(to); sub[cur] += sub[to]; if(sub[to] > sub[ G[cur][0] ]) swap(to, G[cur][0]); } } void dfs_hld(int cur, int& ptr) { in[cur] = ptr; rev[ptr++] = cur; for(auto to : G[cur]) { if(par[cur] == to) continue; head[to] = (to == G[cur][0] ? head[cur] : to); dfs_hld(to, ptr); } out[cur] = ptr; } HLD(int N) : G(N), sub(N, 1), par(N, -1), depth(N), in(N), out(N), rev(N), head(N) {} void add_edge(int u, int v) { G[u].emplace_back(v); G[v].emplace_back(u); } void build(int root=0) { int ptr = 0; dfs_sub(root); dfs_hld(root, ptr); } int lca(int u, int v) { while(1) { if(in[u] > in[v]) swap(u, v); if(head[u] == head[v]) return u; v = par[ head[v] ]; } } int distance(int u, int v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; } template <typename F> void preceed(int u, int v, const F& f, bool b) { for(; head[u] != head[v]; v = par[ head[v] ]) { if(in[u] > in[v]) swap(u, v); f(in[ head[v] ], in[v] + 1); } if(in[u] > in[v]) swap(u, v); f(in[u] + b, in[v] + 1); } // u - v パス上に存在する「頂点」or「辺」全体に f(l, r) を作用 template <typename F> void query_vertices(int u, int v, const F& f) { preceed(u, v, f, false); } template <typename F> void query_edges(int u, int v, const F& f) { preceed(u, v, f, true); } template <typename T, typename F, typename M> T preceed(int u, int v, T E, const F& f, const M& m, bool b) { T vl(E), vr(E); for(; head[u] != head[v]; v = par[ head[v] ]) { if(in[u] > in[v]) swap(u, v), swap(vl, vr); vr = m(f(in[ head[v] ], in[v] + 1), vr); } if(in[u] > in[v]) swap(u, v), swap(vl, vr); vr = m(f(in[u] + b, in[v] + 1), vr); return m(vl, vr); } // u - v パス上に存在する「頂点」or「辺」全体に割り当てられた値を // 各 chunk に対して f(u, v) で得て // それらを m(l, r) で merge したものを得る // 単位元 E も渡そう template <typename T, typename F, typename M> T query_vertices(int u, int v, T E, const F& f, const M& m) { return preceed(u, v, E, f, m, false); } template <typename T, typename F, typename M> T query_edges(int u, int v, T E, const F& f, const M& m) { return preceed(u, v, E, f, m, true); } }; template <typename MonoidType, typename OperatorType> struct LazySegmentTree { using MMtoM = function< MonoidType(MonoidType, MonoidType) >; using OOtoO = function< OperatorType(OperatorType, OperatorType) >; using MOtoM = function< MonoidType(MonoidType, OperatorType) >; using OItoO = function< OperatorType(OperatorType, int) >; // node, lazy, update flag (for lazy), identity element int n; vector<MonoidType> node; vector<OperatorType> lazy; vector<bool> need_update; MonoidType E0; OperatorType E1; // update / combine / lazy / accumulate function MOtoM upd_f; MMtoM cmb_f; OOtoO lzy_f; OItoO acc_f; void build(int m, vector<MonoidType> v = vector<MonoidType>()) { if(v != vector<MonoidType>()) m = v.size(); n = 1; while(n < m) n *= 2; node = vector<MonoidType>(2*n-1, E0); lazy = vector<OperatorType>(2*n-1, E1); need_update = vector<bool>(2*n-1, false); if(v != vector<MonoidType>()) { for(int i=0; i<m; i++) { node[n-1+i] = v[i]; } for(int i=n-2; i>=0; i--) { node[i] = cmb_f(node[2*i+1], node[2*i+2]); } } } // initialize LazySegmentTree() {} LazySegmentTree(int n_, MonoidType E0_, OperatorType E1_, MOtoM upd_f_, MMtoM cmb_f_, OOtoO lzy_f_, OItoO acc_f_, vector<MonoidType> v = vector<MonoidType>()) : E0(E0_), E1(E1_), upd_f(upd_f_), cmb_f(cmb_f_), lzy_f(lzy_f_), acc_f(acc_f_) { build(n_, v); } void eval(int k, int l, int r) { if(!need_update[k]) return; node[k] = upd_f(node[k], acc_f(lazy[k], r - l)); if(r - l > 1) { lazy[2*k+1] = lzy_f(lazy[2*k+1], lazy[k]); lazy[2*k+2] = lzy_f(lazy[2*k+2], lazy[k]); need_update[2*k+1] = need_update[2*k+2] = true; } lazy[k] = E1; need_update[k] = false; } void update(int a, int b, OperatorType x, int l, int r, int k) { eval(k, l, r); if(b <= l or r <= a) return; if(a <= l and r <= b) { lazy[k] = lzy_f(lazy[k], x); need_update[k] = true; eval(k, l, r); } else { int mid = (l + r) / 2; update(a, b, x, l, mid, 2*k+1); update(a, b, x, mid, r, 2*k+2); node[k] = cmb_f(node[2*k+1], node[2*k+2]); } } MonoidType query(int a, int b, int l, int r, int k) { if(b <= l or r <= a) return E0; eval(k, l, r); if(a <= l and r <= b) return node[k]; int mid = (l + r) / 2; MonoidType vl = query(a, b, l, mid, 2*k+1); MonoidType vr = query(a, b, mid, r, 2*k+2); return cmb_f(vl, vr); } // update [a, b)-th element (applied value, x) void update(int a, int b, OperatorType x) { update(a, b, x, 0, n, 0); } // range query for [a, b) MonoidType query(int a, int b) { return query(a, b, 0, n, 0); } void dump() { fprintf(stderr, "[lazy]\n"); for(int i=0; i<2*n-1; i++) { if(i == n-1) fprintf(stderr, "xxx "); if(lazy[i] == E1) fprintf(stderr, " E "); else fprintf(stderr, "%3d ", lazy[i]); } fprintf(stderr, "\n"); fprintf(stderr, "[node]\n"); for(int i=0; i<2*n-1; i++) { if(i == n-1) fprintf(stderr, "xxx "); if(node[i] == E0) fprintf(stderr, " E "); else fprintf(stderr, "%3d ", node[i]); } fprintf(stderr, "\n"); } }; // 行列ライブラリ // size(): 行数を返す (列数は mat[0].size() で) // 演算子: 複合代入 (+=, *=, -=), 単項 (-), 二項 (+, -, *, ==) // eigen(N): N*N 単位行列を返す // pow(mat, k): mat の k 乗を返す template <typename T> struct Matrix { vector< vector<T> > mat; Matrix() {} Matrix(int h, int w, T val = T(0)) : mat(h, vector<T>(w, val)) {} size_t size() const { return mat.size(); } const vector<T>& operator[](int i) const { return mat[i]; } vector<T>& operator[](int i) { return mat[i]; } Matrix<T> &operator+=(const Matrix<T>& rhs) { assert(mat.size() == rhs.size()); assert(mat[0].size() == rhs[0].size()); for(size_t i=0; i<mat.size(); i++) { for(size_t j=0; j<mat[0].size(); j++) { mat[i][j] += rhs[i][j]; } } return *this; } Matrix<T> operator-() const { Matrix<T> res(*this); for(size_t i=0; i<res.size(); i++) { for(size_t j=0; j<res[0].size(); j++) { res[i][j] *= T(-1); } } return res; } Matrix<T> operator-=(const Matrix<T>& rhs) { return (Matrix<T>(*this) += -rhs); } Matrix<T>& operator*=(const Matrix<T>& rhs) { assert(mat[0].size() == rhs.size()); size_t H = mat.size(), W = rhs[0].size(), C = rhs.size(); Matrix<T> res(H, W); for(size_t i=0; i<H; i++) { for(size_t j=0; j<W; j++) { for(size_t k=0; k<C; k++) { res[i][j] += mat[i][k] * rhs[k][j]; } } } this->mat = res.mat; return *this; } Matrix<T> operator+(const Matrix<T>& rhs) { return (Matrix<T>(*this) += rhs); } Matrix<T> operator*(const Matrix<T>& rhs) { return (Matrix<T>(*this) *= rhs); } Matrix<T> operator-(const Matrix<T> &rhs) { return (Matrix<T>(*this) -= rhs); } bool operator==(const Matrix<T> &rhs) const { return this->mat == rhs.mat; } bool operator!=(const Matrix<T> &rhs) const { return !(*this == rhs); } }; template <typename T> Matrix<T> eigen(size_t N) { Matrix<T> res(N, N, 0); for(size_t i=0; i<N; i++) res[i][i] = T(1); return res; } template <typename T> Matrix<T> pow(Matrix<T> mat, long long int k) { Matrix<T> res = eigen<T>(mat.size()); for(; k>0; k>>=1) { if(k & 1) res *= mat; mat *= mat; } return res; } template <typename T> ostream& operator<< (ostream& out, Matrix<T> mat) { int H = mat.size(), W = mat[0].size(); out << "[" << endl; for(int i=0; i<H; i++) { out << " [ "; for(int j=0; j<W; j++) out << mat[i][j] << " "; out << "]" << endl; } out << "]" << endl; return out; } // ModInt begin using ll = long long; template<ll mod> struct ModInt { ll v; ll mod_pow(ll x, ll n) const { return (!n) ? 1 : (mod_pow((x*x)%mod,n/2) * ((n&1)?x:1)) % mod; } ModInt(ll a = 0) : v(a >= mod ? a % mod : a) {} ModInt operator+ ( const ModInt& b ) const { return (v + b.v >= mod ? ModInt(v + b.v - mod) : ModInt(v + b.v)); } ModInt operator- () const { return ModInt(-v); } ModInt operator- ( const ModInt& b ) const { return (v - b.v < 0 ? ModInt(v - b.v + mod) : ModInt(v - b.v)); } ModInt operator* ( const ModInt& b ) const {return (v * b.v) % mod;} ModInt operator/ ( const ModInt& b ) const {return (v * mod_pow(b.v, mod-2)) % mod;} bool operator== ( const ModInt &b ) const {return v == b.v;} ModInt& operator+= ( const ModInt &b ) { v += b.v; if(v >= mod) v -= mod; return *this; } ModInt& operator-= ( const ModInt &b ) { v -= b.v; if(v < 0) v += mod; return *this; } ModInt& operator*= ( const ModInt &b ) { (v *= b.v) %= mod; return *this; } ModInt& operator/= ( const ModInt &b ) { (v *= mod_pow(b.v, mod-2)) %= mod; return *this; } ModInt pow(ll x) { return ModInt(mod_pow(v, x)); } // operator int() const { return int(v); } // operator long long int() const { return v; } }; template<ll mod> ostream& operator<< (ostream& out, ModInt<mod> a) {return out << a.v;} template<ll mod> istream& operator>> (istream& in, ModInt<mod>& a) { in >> a.v; return in; } // ModInt end void GRL_5_C() { int N; cin >> N; HLD hl(N); for(int i=0; i<N; i++) { int c; cin >> c; for(int j=0; j<c; j++) { int u = i, v; cin >> v; hl.add_edge(u, v); } } hl.build(); int Q; cin >> Q; for(int i=0; i<Q; i++) { int u, v; cin >> u >> v; cout << hl.lca(u, v) << endl; } } void ABC014_D() { int N; cin >> N; HLD hl(N); for(int i=0; i<N-1; i++) { int u, v; cin >> u >> v; u--; v--; hl.add_edge(u, v); } hl.build(); int Q; cin >> Q; for(int i=0; i<Q; i++) { int u, v; cin >> u >> v; u--; v--; cout << hl.distance(u, v) + 1 << endl; } } void AOJ2871() { int N, Q; cin >> N >> Q; HLD hl(N); for(int i=1; i<N; i++) { int u = i, v; cin >> v; v--; hl.add_edge(u, v); } hl.build(); vector<int> color(N); auto &in = hl.in, &out = hl.out; for(int i=0; i<N; i++) { char c; cin >> c; color[ in[i] ] = (c == 'G' ? 1 : -1); } LazySegmentTree<int, int> seg(N, 0, 1, [](int a, int b) { return a * b; }, [](int a, int b) { return a + b; }, [](int a, int b) { return a * b; }, [](int a, int x) { return a; }, color); // seg.dump(); for(int i=0; i<Q; i++) { int v; cin >> v; v--; seg.update(in[v], out[v], -1); int res = seg.query(in[0], out[0]); if(res < 0) cout << "cauliflower" << endl; else cout << "broccoli" << endl; // seg.dump(); } } void yuki_650() { using mint = ModInt<1000000007>; int N; cin >> N; HLD hl(N); vector<int> u(N), v(N); for(int i=0; i<N-1; i++) { cin >> u[i] >> v[i]; hl.add_edge(u[i], v[i]); } hl.build(); auto &ord = hl.in; using Mat = Matrix<mint>; Mat I = eigen<mint>(2); LazySegmentTree<Mat, Mat> seg(N, I, I, [](Mat a, Mat b) { return b; }, [](Mat a, Mat b) { return a * b; }, [](Mat a, Mat b) { return b; }, [](Mat a, int x) { return a; }); auto f = [&](int l, int r) { return seg.query(l, r); }; auto m = [&](Mat a, Mat b) { return a * b; }; int Q; cin >> Q; for(int i=0; i<Q; i++) { char q; cin >> q; if(q == 'x') { int e; mint ul, ur, dl, dr; cin >> e >> ul >> ur >> dl >> dr; Mat mat(2, 2); mat[0] = {ul, ur}; mat[1] = {dl, dr}; hl.query_edges(u[e], v[e], [&mat, &seg](int l, int r) { seg.update(l, r, mat); }); } if(q == 'g') { int x, y; cin >> x >> y; Mat res = hl.query_edges(x, y, I, f, m); cout << res[0][0] << " " << res[0][1] << " " << res[1][0] << " " << res[1][1] << endl; } } } int main() { // GRL_5_C(); // LCA // ABC014_D(); // Distance // AOJ2871(); // Query (subtree) yuki_650(); }