結果
| 問題 |
No.650 行列木クエリ
|
| コンテスト | |
| ユーザー |
tsutaj
|
| 提出日時 | 2019-07-11 01:22:34 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,151 ms / 2,000 ms |
| コード長 | 14,497 bytes |
| コンパイル時間 | 3,052 ms |
| コンパイル使用メモリ | 130,632 KB |
| 実行使用メモリ | 95,872 KB |
| 最終ジャッジ日時 | 2024-11-06 18:07:06 |
| 合計ジャッジ時間 | 9,598 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
ソースコード
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <functional>
#include <tuple>
#include <cassert>
using namespace std;
// HL 分解
// 頂点 v を根とする部分木: [ in[v], out[v] )
// 頂点 v から見た heavy edge chain の頭: head[v]
struct HLD {
vector< vector<int> > G;
vector<int> sub, par, depth, in, out, rev, head;
void dfs_sub(int cur) {
for(auto& to : G[cur]) {
if(par[cur] == to) continue;
par[to] = cur;
depth[to] = depth[cur] + 1;
dfs_sub(to);
sub[cur] += sub[to];
if(sub[to] > sub[ G[cur][0] ]) swap(to, G[cur][0]);
}
}
void dfs_hld(int cur, int& ptr) {
in[cur] = ptr; rev[ptr++] = cur;
for(auto to : G[cur]) {
if(par[cur] == to) continue;
head[to] = (to == G[cur][0] ? head[cur] : to);
dfs_hld(to, ptr);
}
out[cur] = ptr;
}
HLD(int N) : G(N), sub(N, 1), par(N, -1), depth(N),
in(N), out(N), rev(N), head(N) {}
void add_edge(int u, int v) {
G[u].emplace_back(v);
G[v].emplace_back(u);
}
void build(int root=0) {
int ptr = 0; dfs_sub(root); dfs_hld(root, ptr);
}
int lca(int u, int v) {
while(1) {
if(in[u] > in[v]) swap(u, v);
if(head[u] == head[v]) return u;
v = par[ head[v] ];
}
}
int distance(int u, int v) {
return depth[u] + depth[v] - 2 * depth[lca(u, v)];
}
template <typename F>
void preceed(int u, int v, const F& f, bool b) {
for(; head[u] != head[v]; v = par[ head[v] ]) {
if(in[u] > in[v]) swap(u, v);
f(in[ head[v] ], in[v] + 1);
}
if(in[u] > in[v]) swap(u, v);
f(in[u] + b, in[v] + 1);
}
// u - v パス上に存在する「頂点」or「辺」全体に f(l, r) を作用
template <typename F>
void query_vertices(int u, int v, const F& f) {
preceed(u, v, f, false);
}
template <typename F>
void query_edges(int u, int v, const F& f) {
preceed(u, v, f, true);
}
template <typename T, typename F, typename M>
T preceed(int u, int v, T E, const F& f, const M& m, bool b) {
T vl(E), vr(E);
for(; head[u] != head[v]; v = par[ head[v] ]) {
if(in[u] > in[v]) swap(u, v), swap(vl, vr);
vr = m(f(in[ head[v] ], in[v] + 1), vr);
}
if(in[u] > in[v]) swap(u, v), swap(vl, vr);
vr = m(f(in[u] + b, in[v] + 1), vr);
return m(vl, vr);
}
// u - v パス上に存在する「頂点」or「辺」全体に割り当てられた値を
// 各 chunk に対して f(u, v) で得て
// それらを m(l, r) で merge したものを得る
// 単位元 E も渡そう
template <typename T, typename F, typename M>
T query_vertices(int u, int v, T E, const F& f, const M& m) {
return preceed(u, v, E, f, m, false);
}
template <typename T, typename F, typename M>
T query_edges(int u, int v, T E, const F& f, const M& m) {
return preceed(u, v, E, f, m, true);
}
};
template <typename MonoidType, typename OperatorType>
struct LazySegmentTree {
using MMtoM = function< MonoidType(MonoidType, MonoidType) >;
using OOtoO = function< OperatorType(OperatorType, OperatorType) >;
using MOtoM = function< MonoidType(MonoidType, OperatorType) >;
using OItoO = function< OperatorType(OperatorType, int) >;
// node, lazy, update flag (for lazy), identity element
int n;
vector<MonoidType> node;
vector<OperatorType> lazy;
vector<bool> need_update;
MonoidType E0;
OperatorType E1;
// update / combine / lazy / accumulate function
MOtoM upd_f;
MMtoM cmb_f;
OOtoO lzy_f;
OItoO acc_f;
void build(int m, vector<MonoidType> v = vector<MonoidType>()) {
if(v != vector<MonoidType>()) m = v.size();
n = 1; while(n < m) n *= 2;
node = vector<MonoidType>(2*n-1, E0);
lazy = vector<OperatorType>(2*n-1, E1);
need_update = vector<bool>(2*n-1, false);
if(v != vector<MonoidType>()) {
for(int i=0; i<m; i++) {
node[n-1+i] = v[i];
}
for(int i=n-2; i>=0; i--) {
node[i] = cmb_f(node[2*i+1], node[2*i+2]);
}
}
}
// initialize
LazySegmentTree() {}
LazySegmentTree(int n_, MonoidType E0_, OperatorType E1_,
MOtoM upd_f_, MMtoM cmb_f_, OOtoO lzy_f_, OItoO acc_f_,
vector<MonoidType> v = vector<MonoidType>()) :
E0(E0_), E1(E1_),
upd_f(upd_f_), cmb_f(cmb_f_), lzy_f(lzy_f_), acc_f(acc_f_) {
build(n_, v);
}
void eval(int k, int l, int r) {
if(!need_update[k]) return;
node[k] = upd_f(node[k], acc_f(lazy[k], r - l));
if(r - l > 1) {
lazy[2*k+1] = lzy_f(lazy[2*k+1], lazy[k]);
lazy[2*k+2] = lzy_f(lazy[2*k+2], lazy[k]);
need_update[2*k+1] = need_update[2*k+2] = true;
}
lazy[k] = E1;
need_update[k] = false;
}
void update(int a, int b, OperatorType x, int l, int r, int k) {
eval(k, l, r);
if(b <= l or r <= a) return;
if(a <= l and r <= b) {
lazy[k] = lzy_f(lazy[k], x);
need_update[k] = true;
eval(k, l, r);
}
else {
int mid = (l + r) / 2;
update(a, b, x, l, mid, 2*k+1);
update(a, b, x, mid, r, 2*k+2);
node[k] = cmb_f(node[2*k+1], node[2*k+2]);
}
}
MonoidType query(int a, int b, int l, int r, int k) {
if(b <= l or r <= a) return E0;
eval(k, l, r);
if(a <= l and r <= b) return node[k];
int mid = (l + r) / 2;
MonoidType vl = query(a, b, l, mid, 2*k+1);
MonoidType vr = query(a, b, mid, r, 2*k+2);
return cmb_f(vl, vr);
}
// update [a, b)-th element (applied value, x)
void update(int a, int b, OperatorType x) {
update(a, b, x, 0, n, 0);
}
// range query for [a, b)
MonoidType query(int a, int b) {
return query(a, b, 0, n, 0);
}
void dump() {
fprintf(stderr, "[lazy]\n");
for(int i=0; i<2*n-1; i++) {
if(i == n-1) fprintf(stderr, "xxx ");
if(lazy[i] == E1) fprintf(stderr, " E ");
else fprintf(stderr, "%3d ", lazy[i]);
}
fprintf(stderr, "\n");
fprintf(stderr, "[node]\n");
for(int i=0; i<2*n-1; i++) {
if(i == n-1) fprintf(stderr, "xxx ");
if(node[i] == E0) fprintf(stderr, " E ");
else fprintf(stderr, "%3d ", node[i]);
}
fprintf(stderr, "\n");
}
};
// 行列ライブラリ
// size(): 行数を返す (列数は mat[0].size() で)
// 演算子: 複合代入 (+=, *=, -=), 単項 (-), 二項 (+, -, *, ==)
// eigen(N): N*N 単位行列を返す
// pow(mat, k): mat の k 乗を返す
template <typename T>
struct Matrix {
vector< vector<T> > mat;
Matrix() {}
Matrix(int h, int w, T val = T(0)) : mat(h, vector<T>(w, val)) {}
size_t size() const { return mat.size(); }
const vector<T>& operator[](int i) const { return mat[i]; }
vector<T>& operator[](int i) { return mat[i]; }
Matrix<T> &operator+=(const Matrix<T>& rhs) {
assert(mat.size() == rhs.size());
assert(mat[0].size() == rhs[0].size());
for(size_t i=0; i<mat.size(); i++) {
for(size_t j=0; j<mat[0].size(); j++) {
mat[i][j] += rhs[i][j];
}
}
return *this;
}
Matrix<T> operator-() const {
Matrix<T> res(*this);
for(size_t i=0; i<res.size(); i++) {
for(size_t j=0; j<res[0].size(); j++) {
res[i][j] *= T(-1);
}
}
return res;
}
Matrix<T> operator-=(const Matrix<T>& rhs) {
return (Matrix<T>(*this) += -rhs);
}
Matrix<T>& operator*=(const Matrix<T>& rhs) {
assert(mat[0].size() == rhs.size());
size_t H = mat.size(), W = rhs[0].size(), C = rhs.size();
Matrix<T> res(H, W);
for(size_t i=0; i<H; i++) {
for(size_t j=0; j<W; j++) {
for(size_t k=0; k<C; k++) {
res[i][j] += mat[i][k] * rhs[k][j];
}
}
}
this->mat = res.mat;
return *this;
}
Matrix<T> operator+(const Matrix<T>& rhs) {
return (Matrix<T>(*this) += rhs);
}
Matrix<T> operator*(const Matrix<T>& rhs) {
return (Matrix<T>(*this) *= rhs);
}
Matrix<T> operator-(const Matrix<T> &rhs) {
return (Matrix<T>(*this) -= rhs);
}
bool operator==(const Matrix<T> &rhs) const {
return this->mat == rhs.mat;
}
bool operator!=(const Matrix<T> &rhs) const {
return !(*this == rhs);
}
};
template <typename T>
Matrix<T> eigen(size_t N) {
Matrix<T> res(N, N, 0);
for(size_t i=0; i<N; i++) res[i][i] = T(1);
return res;
}
template <typename T>
Matrix<T> pow(Matrix<T> mat, long long int k) {
Matrix<T> res = eigen<T>(mat.size());
for(; k>0; k>>=1) {
if(k & 1) res *= mat;
mat *= mat;
}
return res;
}
template <typename T>
ostream& operator<< (ostream& out, Matrix<T> mat) {
int H = mat.size(), W = mat[0].size();
out << "[" << endl;
for(int i=0; i<H; i++) {
out << " [ ";
for(int j=0; j<W; j++) out << mat[i][j] << " ";
out << "]" << endl;
}
out << "]" << endl;
return out;
}
// ModInt begin
using ll = long long;
template<ll mod>
struct ModInt {
ll v;
ll mod_pow(ll x, ll n) const {
return (!n) ? 1 : (mod_pow((x*x)%mod,n/2) * ((n&1)?x:1)) % mod;
}
ModInt(ll a = 0) : v(a >= mod ? a % mod : a) {}
ModInt operator+ ( const ModInt& b ) const {
return (v + b.v >= mod ? ModInt(v + b.v - mod) : ModInt(v + b.v));
}
ModInt operator- () const {
return ModInt(-v);
}
ModInt operator- ( const ModInt& b ) const {
return (v - b.v < 0 ? ModInt(v - b.v + mod) : ModInt(v - b.v));
}
ModInt operator* ( const ModInt& b ) const {return (v * b.v) % mod;}
ModInt operator/ ( const ModInt& b ) const {return (v * mod_pow(b.v, mod-2)) % mod;}
bool operator== ( const ModInt &b ) const {return v == b.v;}
ModInt& operator+= ( const ModInt &b ) {
v += b.v;
if(v >= mod) v -= mod;
return *this;
}
ModInt& operator-= ( const ModInt &b ) {
v -= b.v;
if(v < 0) v += mod;
return *this;
}
ModInt& operator*= ( const ModInt &b ) {
(v *= b.v) %= mod;
return *this;
}
ModInt& operator/= ( const ModInt &b ) {
(v *= mod_pow(b.v, mod-2)) %= mod;
return *this;
}
ModInt pow(ll x) { return ModInt(mod_pow(v, x)); }
// operator int() const { return int(v); }
// operator long long int() const { return v; }
};
template<ll mod>
ostream& operator<< (ostream& out, ModInt<mod> a) {return out << a.v;}
template<ll mod>
istream& operator>> (istream& in, ModInt<mod>& a) {
in >> a.v;
return in;
}
// ModInt end
void GRL_5_C() {
int N; cin >> N;
HLD hl(N);
for(int i=0; i<N; i++) {
int c; cin >> c;
for(int j=0; j<c; j++) {
int u = i, v; cin >> v;
hl.add_edge(u, v);
}
}
hl.build();
int Q; cin >> Q;
for(int i=0; i<Q; i++) {
int u, v; cin >> u >> v;
cout << hl.lca(u, v) << endl;
}
}
void ABC014_D() {
int N; cin >> N;
HLD hl(N);
for(int i=0; i<N-1; i++) {
int u, v; cin >> u >> v;
u--; v--;
hl.add_edge(u, v);
}
hl.build();
int Q; cin >> Q;
for(int i=0; i<Q; i++) {
int u, v; cin >> u >> v;
u--; v--;
cout << hl.distance(u, v) + 1 << endl;
}
}
void AOJ2871() {
int N, Q; cin >> N >> Q;
HLD hl(N);
for(int i=1; i<N; i++) {
int u = i, v; cin >> v; v--;
hl.add_edge(u, v);
}
hl.build();
vector<int> color(N);
auto &in = hl.in, &out = hl.out;
for(int i=0; i<N; i++) {
char c; cin >> c;
color[ in[i] ] = (c == 'G' ? 1 : -1);
}
LazySegmentTree<int, int> seg(N, 0, 1,
[](int a, int b) { return a * b; },
[](int a, int b) { return a + b; },
[](int a, int b) { return a * b; },
[](int a, int x) { return a; },
color);
// seg.dump();
for(int i=0; i<Q; i++) {
int v; cin >> v; v--;
seg.update(in[v], out[v], -1);
int res = seg.query(in[0], out[0]);
if(res < 0) cout << "cauliflower" << endl;
else cout << "broccoli" << endl;
// seg.dump();
}
}
void yuki_650() {
using mint = ModInt<1000000007>;
int N; cin >> N;
HLD hl(N);
vector<int> u(N), v(N);
for(int i=0; i<N-1; i++) {
cin >> u[i] >> v[i];
hl.add_edge(u[i], v[i]);
}
hl.build();
auto &ord = hl.in;
using Mat = Matrix<mint>;
Mat I = eigen<mint>(2);
LazySegmentTree<Mat, Mat> seg(N, I, I,
[](Mat a, Mat b) { return b; },
[](Mat a, Mat b) { return a * b; },
[](Mat a, Mat b) { return b; },
[](Mat a, int x) { return a; });
auto f = [&](int l, int r) { return seg.query(l, r); };
auto m = [&](Mat a, Mat b) { return a * b; };
int Q; cin >> Q;
for(int i=0; i<Q; i++) {
char q; cin >> q;
if(q == 'x') {
int e; mint ul, ur, dl, dr; cin >> e >> ul >> ur >> dl >> dr;
Mat mat(2, 2);
mat[0] = {ul, ur};
mat[1] = {dl, dr};
hl.query_edges(u[e], v[e], [&mat, &seg](int l, int r) { seg.update(l, r, mat); });
}
if(q == 'g') {
int x, y; cin >> x >> y;
Mat res = hl.query_edges(x, y, I, f, m);
cout << res[0][0] << " " << res[0][1] << " " << res[1][0] << " " << res[1][1] << endl;
}
}
}
int main() {
// GRL_5_C(); // LCA
// ABC014_D(); // Distance
// AOJ2871(); // Query (subtree)
yuki_650();
}
tsutaj