結果

問題 No.194 フィボナッチ数列の理解(1)
ユーザー fumiphysfumiphys
提出日時 2019-07-17 22:34:04
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 15 ms / 5,000 ms
コード長 7,587 bytes
コンパイル時間 1,970 ms
コンパイル使用メモリ 180,056 KB
実行使用メモリ 11,136 KB
最終ジャッジ日時 2024-06-06 01:51:34
合計ジャッジ時間 3,068 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 10 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 4 ms
5,376 KB
testcase_05 AC 4 ms
5,376 KB
testcase_06 AC 5 ms
5,376 KB
testcase_07 AC 7 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 5 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 AC 3 ms
5,376 KB
testcase_12 AC 4 ms
5,376 KB
testcase_13 AC 3 ms
5,376 KB
testcase_14 AC 1 ms
5,376 KB
testcase_15 AC 8 ms
5,376 KB
testcase_16 AC 7 ms
5,376 KB
testcase_17 AC 3 ms
5,376 KB
testcase_18 AC 6 ms
5,376 KB
testcase_19 AC 9 ms
5,376 KB
testcase_20 AC 15 ms
10,880 KB
testcase_21 AC 14 ms
11,136 KB
testcase_22 AC 13 ms
10,984 KB
testcase_23 AC 3 ms
5,376 KB
testcase_24 AC 8 ms
7,040 KB
testcase_25 AC 7 ms
6,784 KB
testcase_26 AC 8 ms
6,400 KB
testcase_27 AC 8 ms
7,280 KB
testcase_28 AC 4 ms
5,376 KB
testcase_29 AC 13 ms
10,368 KB
testcase_30 AC 9 ms
5,376 KB
testcase_31 AC 2 ms
5,376 KB
testcase_32 AC 4 ms
5,376 KB
testcase_33 AC 5 ms
5,376 KB
testcase_34 AC 4 ms
5,376 KB
testcase_35 AC 3 ms
5,376 KB
testcase_36 AC 7 ms
5,376 KB
testcase_37 AC 3 ms
5,376 KB
testcase_38 AC 7 ms
5,376 KB
testcase_39 AC 4 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// includes
#include <bits/stdc++.h>

// macros
#define ll long long int
#define pb emplace_back
#define mk make_pair
#define pq priority_queue
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define vrep(v, i) for(int i = 0; i < (v).size(); i++)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define FI first
#define SE second
#define dump(a, n) for(int i = 0; i < n; i++)cout << a[i] << "\n "[i + 1 != n];
#define dump2(a, n, m) for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)cout << a[i][j] << "\n "[j + 1 != m];
#define bit(n) (1LL<<(n))
#define INT(n) int n; cin >> n;
#define LL(n) ll n; cin >> n;
#define DOUBLE(n) double n; cin >> n;
using namespace std;

template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}

//  types
typedef pair<int, int> P;
typedef pair<ll, int> Pl;
typedef pair<ll, ll> Pll;
typedef pair<double, double> Pd;
typedef complex<double> cd;

// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1e9 + 7;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, -1, 0, 1};

// solve
template <typename T>
T power(T a, T n, T mod) {
  T res = 1;
  T tmp = n;
  T curr = a;
  while(tmp){
    if(tmp % 2 == 1){
      res = (T)(res * curr % mod);
    }
    curr = (T)(curr * curr % mod);
    tmp >>= 1;
  }

  return res;
}


template<typename T>
T extgcd(T a, T b, T &x, T &y){ 
  T d = a;
  if(b != 0){
    d = extgcd(b, a % b, y, x);
    y -= (a / b) * x;
  }else{
    x = 1, y = 0;
  }
  return d;
}

template <typename T>
T modinv(T a, T m){
  long long x = 0, y = 0;
  extgcd<long long>(a, m, x, y);
  x %= m;
  if(x < 0)x += m;
  return x;
}

template <int MOD = int(1e9+7)>
struct LMatrix{
  vector<vector<long long>> v;
  int n, m;
  LMatrix(int n_, int m_ = -1): n(n_), m(m_){
    if(m < 0)m = n;
    v.resize(n);
    for(int i = 0; i < n; i++)v[i].resize(m, 0);
  }
  void identity(){
    assert(n == m);
    for(int i = 0; i < n; i++){
      for(int j = 0; j < n; j++){
        v[i][j] = (i == j ? 1: 0);
      }
    }
  }
  vector<long long> &operator[](size_t i){
    return v[i];
  }
  const vector<long long> &operator[](size_t i) const{
    return v[i];
  }
  LMatrix operator*(const LMatrix &r) const{
    assert(m == r.n);
    int l = r.m;
    LMatrix res(n, l);
    for(int i = 0; i < n; i++){
      for(int j = 0; j < l; j++){
        res.v[i][j] = 0;
        for(int k = 0; k < m; k++){
          res.v[i][j] = (res.v[i][j] + v[i][k] * r.v[k][j] % MOD) % MOD;
        }
      }
    }
    return res;
  }
  LMatrix operator+(const LMatrix &r) const{
    assert(n == r.n);
    assert(m == r.m);
    LMatrix res(n, m);
    for(int i = 0; i < n; i++){
      for(int j = 0; j < m; j++){
        res[i][j] = (v[i][j] + r[i][j]) % MOD;
      }
    }
    return res;
  }
  LMatrix operator-(const LMatrix &r) const{
    assert(n == r.n);
    assert(m == r.m);
    LMatrix res(n, m);
    for(int i = 0; i < n; i++){
      for(int j = 0; j < m; j++){
        res[i][j] = (v[i][j] - r[i][j]) % MOD;
        if(res[i][j] < 0)res[i][j] += MOD;
      }
    }
    return res;
  }
  template <typename T>
  LMatrix operator*(T a) const{
    LMatrix res = *this;
    for(int i = 0; i < n; i++){
      for(int j = 0; j < n; j++){
        res[i][j] = a * res[i][j] % MOD;
      }
    }
    return res;
  }
  LMatrix inv2() const{
    assert(n == 2 && m == 2);
    long long det = v[0][0] * v[1][1] % MOD - v[0][1] * v[1][0] % MOD;
    if(det < 0)det += MOD;
    assert(det != 0);
    LMatrix res(2, 2);
    long long inv = modinv(det, (long long)MOD);
    res[0][0] = v[1][1];
    res[1][1] = v[0][0];
    res[1][0] = - v[1][0];
    res[0][1] = - v[0][1];
    for(int i = 0; i < n; i++){
      for(int j = 0; j < m; j++){
        res[i][j] %= MOD;
        res[i][j] = res[i][j] * inv % MOD;
        if(res[i][j] < 0)res[i][j] += MOD;
      }
    }
    return res;
  }
};

template <typename T, int MOD = int(1e9+7)>
LMatrix<MOD> operator*(T a, const LMatrix<MOD> b){
  return b * a;
}

template <int MOD = int(1e9+7)>
LMatrix<MOD> powerm(LMatrix<MOD> &a, long long n){
  long long tmp = n;
  LMatrix<MOD> curr = a;
  LMatrix<MOD> res(a.n);
  res.identity();
  while(tmp){
    if(tmp % 2 == 1){
      res = res * curr;
    }
    curr = curr * curr;
    tmp /= 2;
  }
  return res;
}


int main(int argc, char const* argv[])
{
  ios_base::sync_with_stdio(false);
  cin.tie(0);
  cout << fixed << setprecision(20);
  LL(n); LL(k); vector<ll> a(n); cin >> a;
  k--;
  if(k < n){
    ll sum = 0;
    rep(i, k + 1)sum = (sum + a[i]) % mod;
    cout << a[k] << " " << sum << endl;
    return 0;
  }
  if(n <= 1e4 && k <= 1e6){
    vector<ll> f(k + 1);
    rep(i, n)f[i] = a[i];
    ll s = 0; rep(i, n)s += a[i];
    f[n] = s;
    s *= 2;
    for(int i = n + 1; i <= k; i++){
      f[i] = (2 * f[i-1] % mod - f[i-n-1]) % mod;
      if(f[i] < 0)f[i] += mod;
      s = (s + f[i]) % mod;
    }
    cout << f[k] << " " << s << endl;
  }else{
    LMatrix<> lm(n + 1, n + 1);
    rep(i, n)lm[0][i] = 1;
    rep(i, n - 1)lm[i+1][i] = 1;
    rep(i, n + 1)lm[n][i] = 1;
    auto lmp = powerm<>(lm, k - n + 1);
    ll fk = 0, sk = 0;
    ll s = 0; rep(i, n)s += a[i];
    rep(i, n)fk = (fk + lmp[0][i] * a[n-i-1] % mod) % mod;
    fk = (fk + s * lmp[0][n] % mod) % mod;
    rep(i, n)sk = (sk + lmp[n][i] * a[n-i-1] % mod) % mod;
    sk = (sk + s * lmp[n][n] % mod) % mod;
    cout << fk << " " << sk << endl;
  }
  return 0;
}
0