結果

問題 No.243 出席番号(2)
ユーザー fumiphys
提出日時 2019-07-18 02:05:46
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,136 ms / 2,000 ms
コード長 5,539 bytes
コンパイル時間 1,849 ms
コンパイル使用メモリ 173,408 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-12-24 00:04:44
合計ジャッジ時間 14,670 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// includes
#include <bits/stdc++.h>
// macros
#define ll long long int
#define pb emplace_back
#define mk make_pair
#define pq priority_queue
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define vrep(v, i) for(int i = 0; i < (v).size(); i++)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define FI first
#define SE second
#define dump(a, n) for(int i = 0; i < n; i++)cout << a[i] << "\n "[i + 1 != n];
#define dump2(a, n, m) for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)cout << a[i][j] << "\n "[j + 1 != m];
#define bit(n) (1LL<<(n))
#define INT(n) int n; cin >> n;
#define LL(n) ll n; cin >> n;
#define DOUBLE(n) double n; cin >> n;
using namespace std;
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size
    ())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr =
    itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr;
    auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto
    titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os <<
    *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os <<
    itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end();
    ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
// types
typedef pair<int, int> P;
typedef pair<ll, int> Pl;
typedef pair<ll, ll> Pll;
typedef pair<double, double> Pd;
typedef complex<double> cd;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1e9 + 7;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, -1, 0, 1};
// solve
template <typename T>
T power(T a, T n, T mod) {
T res = 1;
T tmp = n;
T curr = a;
while(tmp){
if(tmp % 2 == 1){
res = (T)(res * curr % mod);
}
curr = (T)(curr * curr % mod);
tmp >>= 1;
}
return res;
}
struct Factorial{
int n;
const int MOD = 1e9 + 7;
vector<long long> fac;
vector<long long> inv_;
Factorial(int n): n(n){
fac.resize(n + 1);
inv_.resize(n + 1);
calc_factorial();
calc_inv();
}
void calc_factorial(){
fac[0] = 1;
for(int i = 1; i <= n; i++){
fac[i] = i * fac[i-1] % MOD;
}
}
void calc_inv(){
inv_[n] = power<long long>(fac[n], MOD - 2, MOD);
for(int i = n - 1; i >= 0; i--){
inv_[i] = (i + 1) * inv_[i+1] % MOD;
}
}
long long& operator[](size_t i){
if(i < 0 || i > n){
cerr << "list index out of range" << endl;
abort();
}
return fac[i];
}
long long inv(size_t i){
if(i < 0 || i > n){
cerr << "list index out of range" << endl;
abort();
}
return inv_[i];
}
long long comb(int n, int k){
if(n < k)return 0;
long long res = fac[n];
res = res * inv_[n-k] % MOD;
res = res * inv_[k] % MOD;
return res;
}
long long perm(int n, int k){
if(n < k)return 0;
long long res = fac[n];
res = res * inv_[n-k] % MOD;
return res;
}
long long h(int n, int k){
if(n == 0 && k == 0)return 1;
return comb(n + k - 1, k);
}
};
ll dp[2][5001];
int c[5001];
int sum[5001];
int main(int argc, char const* argv[])
{
ios_base::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(20);
INT(n); vector<int> a(n); cin >> a;
rep(i, n)c[a[i]]++;
rep(i, n)sum[i] = (i > 0 ? sum[i-1]: 0) + c[i];
dp[0][0] = 1;
Factorial fac(n);
rep(i, n - 1){
rep(j, n + 1)dp[(i+1)&1][j] = 0;
rep(j, i + 2){
for(int k = 0; k <= min(i + 1 - j, c[i+1]); k++){
ll remk = fac.comb(i + 1 - j, k);
ll cik = fac.perm(c[i+1], k);
(dp[(i+1)&1][j+k+1] += (remk * cik % mod) * (dp[i&1][j] * (sum[i] - j) % mod) % mod) %= mod;
(dp[(i+1)&1][j+k] += (remk * cik % mod) * (dp[i&1][j] * 1 % mod) % mod) %= mod;
}
}
}
int k = sum[n-1];
ll res = dp[(n-1)&1][k] * fac[n-k] % mod;
cout << res << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0