結果
問題 | No.42 貯金箱の溜息 |
ユーザー | fumiphys |
提出日時 | 2019-07-19 19:52:47 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 27 ms / 5,000 ms |
コード長 | 6,193 bytes |
コンパイル時間 | 1,821 ms |
コンパイル使用メモリ | 176,488 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-07 16:58:39 |
合計ジャッジ時間 | 2,475 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 23 ms
5,248 KB |
testcase_01 | AC | 27 ms
5,376 KB |
testcase_02 | AC | 27 ms
5,376 KB |
ソースコード
// includes #include <bits/stdc++.h> // macros #define ll long long int #define pb emplace_back #define mk make_pair #define pq priority_queue #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define rep(i, n) FOR(i, 0, n) #define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--) #define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr) #define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr) #define vrep(v, i) for(int i = 0; i < (v).size(); i++) #define all(x) (x).begin(),(x).end() #define sz(x) ((int)(x).size()) #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()) #define FI first #define SE second #define dump(a, n) for(int i = 0; i < n; i++)cout << a[i] << "\n "[i + 1 != n]; #define dump2(a, n, m) for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)cout << a[i][j] << "\n "[j + 1 != m]; #define bit(n) (1LL<<(n)) #define INT(n) int n; cin >> n; #define LL(n) ll n; cin >> n; #define DOUBLE(n) double n; cin >> n; using namespace std; template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;} template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;} template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;} template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} // types typedef pair<int, int> P; typedef pair<ll, int> Pl; typedef pair<ll, ll> Pll; typedef pair<double, double> Pd; typedef complex<double> cd; // constants const int inf = 1e9; const ll linf = 1LL << 50; const double EPS = 1e-10; const int mod = 1e9 + 9; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, -1, 0, 1}; // solve template <int MOD> struct ModInt { ll x = 0; ModInt(){} ModInt(ll x_){ x = int(x_ % MOD); if(x < 0)x += MOD; } ModInt(const ModInt &m){ x = m.x; } ModInt& operator+=(const ModInt &y){ x = (x + y.x) % MOD; if(x < 0)x += MOD; return *this; } ModInt& operator-=(const ModInt &y){ x = (x - y.x) % MOD; if(x < 0)x += MOD; return *this; } ModInt& operator*=(const ModInt &y){ x = (x * y.x) % MOD; if(x < 0)x += MOD; return *this; } ModInt& operator/=(const ModInt &y){ x = (x * y.inverse().x) % MOD; if(x < 0)x += MOD; return *this; } ModInt inverse() const{ ll res = 1; ll tmp = MOD - 2; ll curr = x; while(tmp){ if(tmp % 2 == 1)res = res * curr % MOD; curr = curr * curr % MOD; tmp /= 2; } return ModInt(res); } ModInt operator-() const{ return ModInt(-x); } ModInt operator+(const ModInt &y) const{ return ModInt(*this) += y; } ModInt operator-(const ModInt &y) const{ return ModInt(*this) -= y; } ModInt operator*(const ModInt &y) const{ return ModInt(*this) *= y; } ModInt operator/(const ModInt &y) const{ return ModInt(*this) /= y; } bool operator==(const ModInt &y) const{ return x == y.x; } bool operator!=(const ModInt &y) const{ return x != y.x; } friend ostream& operator<<(ostream &os, const ModInt<MOD> &m){ return os << m.x; } friend istream& operator>>(istream &is, ModInt<MOD> &m){ long t; is >> t; m = ModInt<MOD>(t); return is; } }; template <typename T> struct LagrangeInterpolationM{ int n = 0; vector<T> x, y; vector<T> nume; LagrangeInterpolationM(){} LagrangeInterpolationM(const vector<T> &x, const vector<T> &y): x(x), y(y){ n = x.size() - 1; nume.resize(n + 1); for(int i = 0; i <= n; i++){ T t = T(1); for(int j = 0; j <= n; j++){ if(i == j)continue; t = t * (x[i] - x[j]); } nume[i] = t.inverse(); } } T val(T t){ T a = T(1); for(int i = 0; i <= n; i++){ if(t == x[i])return y[i]; a = a * (t - x[i]); } T res = T(0); for(int i = 0; i <= n; i++){ res += y[i] * nume[i] * (a / (t - x[i])); } return res; } }; ll dp[7][3010]; int main(int argc, char const* argv[]) { ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20); dp[0][0] = 1; int c[6] = {1, 5, 10, 50, 100, 500}; rep(i, 6){ rep(j, 3001){ dp[i+1][j] = dp[i][j]; if(j-c[i]>=0)dp[i+1][j] = (dp[i+1][j] + dp[i+1][j-c[i]]); } } vector<LagrangeInterpolationM<ModInt<mod>>> lag(500); rep(i, 500){ vector<ModInt<mod>> x(6), y(6); rep(j, 6){ x[j] = j; y[j] = dp[6][j*500+i]; } lag[i] = LagrangeInterpolationM<ModInt<mod>>(x, y); } INT(t); rep(i_, t){ LL(m); cout << lag[m%500].val(m/500) << endl; } return 0; }