結果

問題 No.2 素因数ゲーム
ユーザー Shuz*Shuz*
提出日時 2019-07-22 16:02:54
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 5,000 ms
コード長 7,347 bytes
コンパイル時間 2,629 ms
コンパイル使用メモリ 197,716 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-23 18:36:46
合計ジャッジ時間 3,424 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 3 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 AC 2 ms
6,940 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 2 ms
6,944 KB
testcase_18 AC 2 ms
6,944 KB
testcase_19 AC 2 ms
6,944 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 2 ms
6,944 KB
testcase_22 AC 2 ms
6,940 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 2 ms
6,944 KB
testcase_25 AC 2 ms
6,944 KB
testcase_26 AC 2 ms
6,944 KB
testcase_27 AC 2 ms
6,940 KB
testcase_28 AC 2 ms
6,940 KB
testcase_29 AC 2 ms
6,940 KB
testcase_30 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

// Define
using ll = long long;
using ull = unsigned long long;
using ld = long double;
const ll dx[4] = {1, 0, -1, 0};
const ll dy[4] = {0, 1, 0, -1};
const ll MOD = 1e9 + 7;
const ll mod = 998244353;
const ll inf = 1 << 30;
const ll LINF = LONG_MAX;
const ll INF = 1LL << 60;
const ull MAX = ULONG_MAX;
#define mp make_pair
#define pb push_back
#define elif else if
#define endl '\n'
#define space ' '
#define def inline auto
#define func inline constexpr ll
#define run(a) __attribute__((constructor)) def _##a()
#define all(v) begin(v), end(v)
#define rall(v) rbegin(v), rend(v)
#define input(a) scanf("%lld", &(a))
#define print(a) printf("%lld\n", (a))
#define fi first
#define se second
#define ok(a, b) (0 <= (a) && (a) < (b))
#define modulo(a, b) ((a % b + b) % b)
template <class T> using vvector = vector<vector<T>>;
template <class T> using pvector = vector<pair<T, T>>;
template <class T>
using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;

template <class T> bool chmax(T &a, const T &b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <class T> bool chmin(T &a, const T &b) {
    if (a > b) {
        a = b;
        return 1;
    }
    return 0;
}

// Debug
#define debug(...)                                                             \
    {                                                                          \
        cerr << __LINE__ << ": " << #__VA_ARGS__ << " = ";                     \
        for (auto &&X : {__VA_ARGS__}) cerr << "[" << X << "] ";               \
        cerr << endl;                                                          \
    }

#define dump(a, h, w)                                                          \
    {                                                                          \
        cerr << __LINE__ << ": " << #a << " = [" << endl;                      \
        rep(__i, h) {                                                          \
            rep(__j, w) cerr << a[__i][__j] << space;                          \
            cerr << endl;                                                      \
        }                                                                      \
        cerr << "]" << endl;                                                   \
    }

#define vdump(a, n)                                                            \
    {                                                                          \
        cerr << __LINE__ << ": " << #a << " = [";                              \
        rep(__i, n) if (__i) cerr << space << a[__i];                          \
        else cerr << a[__i];                                                   \
        cerr << "]" << endl;                                                   \
    }

// Loop
#define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i)
#define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i)
#define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i)
#define each(i, a) for (auto &&i : a)
#define loop() for (;;)

// Stream
#define fout(n) cout << fixed << setprecision(n)
#define fasten cin.tie(0), ios::sync_with_stdio(0)
run(0) { fasten, fout(10); }

// Speed
#pragma GCC optimize("O3")
#pragma GCC target("avx")

// Math
func gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
func lcm(ll a, ll b) { return a * b / gcd(a, b); }
func sign(ll a) { return a ? abs(a) / a : 0; }

struct Factorize {
#define MAXL (50000 >> 5) + 1
#define GET(x) (mark[x >> 5] >> (x & 31) & 1)
#define SET(x) (mark[x >> 5] |= 1 << (x & 31))
    int mark[MAXL];
    int P[50000], Pt = 0;

    void sieve() {
        int i, j, k;
        SET(1);
        int n = 46340;
        for (i = 2; i <= n; i++) {
            if (!GET(i)) {
                for (k = n / i, j = i * k; k >= i; k--, j -= i) SET(j);
                P[Pt++] = i;
            }
        }
    }
    ll mul(ull a, ull b, ull mod) {
        ll ret = 0;
        for (a %= mod, b %= mod; b != 0;
             b >>= 1, a <<= 1, a = a >= mod ? a - mod : a) {
            if (b & 1) {
                ret += a;
                if (ret >= mod) ret -= mod;
            }
        }
        return ret;
    }
    void exgcd(ll x, ll y, ll &g, ll &a, ll &b) {
        if (y == 0)
            g = x, a = 1, b = 0;
        else
            exgcd(y, x % y, g, b, a), b -= (x / y) * a;
    }
    ll llgcd(ll x, ll y) {
        if (x < 0) x = -x;
        if (y < 0) y = -y;
        if (!x || !y) return x + y;
        ll t;
        while (x % y) t = x, x = y, y = t % y;
        return y;
    }
    ll inverse(ll x, ll p) {
        ll g, b, r;
        exgcd(x, p, g, r, b);
        if (g < 0) r = -r;
        return (r % p + p) % p;
    }
    ll mpow(ll x, ll y, ll mod) { // mod < 2^32
        ll ret = 1;
        while (y) {
            if (y & 1) ret = (ret * x) % mod;
            y >>= 1, x = (x * x) % mod;
        }
        return ret % mod;
    }
    ll mpow2(ll x, ll y, ll mod) {
        ll ret = 1;
        while (y) {
            if (y & 1) ret = mul(ret, x, mod);
            y >>= 1, x = mul(x, x, mod);
        }
        return ret % mod;
    }
    int isPrime(ll p) { // implements by miller-babin
        if (p < 2 || !(p & 1)) return 0;
        if (p == 2) return 1;
        ll q = p - 1, a, t;
        int k = 0, b = 0;
        while (!(q & 1)) q >>= 1, k++;
        for (int it = 0; it < 2; it++) {
            a = rand() % (p - 4) + 2;
            t = mpow2(a, q, p);
            b = (t == 1) || (t == p - 1);
            for (int i = 1; i < k && !b; i++) {
                t = mul(t, t, p);
                if (t == p - 1) b = 1;
            }
            if (b == 0) return 0;
        }
        return 1;
    }
    ll pollard_rho(ll n, ll c) {
        ll x = 2, y = 2, i = 1, k = 2, d;
        while (true) {
            x = (mul(x, x, n) + c);
            if (x >= n) x -= n;
            d = llgcd(x - y, n);
            if (d > 1) return d;
            if (++i == k) y = x, k <<= 1;
        }
        return n;
    }
    void factorize(int n, vector<ll> &f) {
        for (int i = 0; i < Pt && P[i] * P[i] <= n; i++) {
            if (n % P[i] == 0) {
                while (n % P[i] == 0) f.push_back(P[i]), n /= P[i];
            }
        }
        if (n != 1) f.push_back(n);
    }
    void llfactorize(ll n, vector<ll> &f) {
        if (n == 1) return;
        if (n < 2e+9) {
            factorize(n, f);
            return;
        }
        if (isPrime(n)) {
            f.push_back(n);
            return;
        }

        ll d = n;
        for (int i = 2; d == n; i++) d = pollard_rho(n, i);
        llfactorize(d, f);
        llfactorize(n / d, f);
    }

    vector<ll> factors(ll n) {
        vector<ll> f;
        map<ll, int> r;

        llfactorize(n, f);
        for (auto &x : f) r[x]++;

        vector<ll> ret;
        for (auto it = r.begin(); it != r.end(); it++) {
            for (int i = 0; i < it->second; i++) ret.push_back(it->first);
        }
        return ret;
    }

    vector<ll> factorize(ll n) {
        sieve();
        return factors(n);
    }
};

signed main() {
    ll N, res = 0;
    cin >> N;
    Factorize F;
    vector<ll> A = F.factorize(N);
    map<ll, ll> M;
    rep(i, A.size()) M[A[i]]++;
    each(i, M) res ^= i.se;
    cout << (res ? "Alice" : "Bob") << endl;
}
0