結果

問題 No.854 公平なりんご分配
ユーザー ミドリムシミドリムシ
提出日時 2019-07-26 21:54:31
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 540 ms / 3,153 ms
コード長 4,407 bytes
コンパイル時間 1,888 ms
コンパイル使用メモリ 176,320 KB
実行使用メモリ 128,944 KB
最終ジャッジ日時 2024-07-02 07:07:07
合計ジャッジ時間 13,704 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 92
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
const lint mod = 1e9 + 7;
#define all(x) (x).begin(), (x).end()
#define bitcount(n) __builtin_popcountl((lint)(n))
#define fcout cout << fixed << setprecision(15)
#define highest(x) (63 - __builtin_clzl(x))
template<class T> inline void YES(T condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; }
template<class T> inline void Yes(T condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; }
template<class T = string, class U = char>int character_count(T text, U character){ int ans = 0; for(U i: text){ ans += (i == character); } return ans; }
lint power(lint base, lint exponent, lint module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }}
struct position{ int y, x; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; // double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); }
template<class T, class U> string to_string(pair<T, U> x){ return to_string(x.first) + "," + to_string(x.second); } string to_string(string x){ return x; }
template<class itr> void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++) ans += to_string(*i) + " "; if(!ans.empty()) ans.pop_back(); cout << ans << endl; }
template<class itr> void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } }
template<class T> T gcd(T a, T b){ if(a && b){ return gcd(min(a, b), max(a, b) % min(a, b)); }else{ return a; }} template<class T> T lcm(T a, T b){ return a / gcd(a, b) * b; }
struct combination{ vector<lint> fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint C(int p, int q) const{ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } };
template<class itr> bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; }

int main(){
    int N;
    cin >> N;
    vector<int> prime;
    vector<int> factor[N];
    int is_0[N + 1];
    for(int i = 0; i < N; i++){
        int A;
        cin >> A;
        if(A == 0){
            is_0[i + 1] = 1;
            continue;
        }
        is_0[i + 1] = 0;
        for(int j = 2; j * j <= A; ){
            if(A % j){
                j++;
            }else{
                A /= j;
                factor[i].push_back(j);
                prime.push_back(j);
            }
        }
        if(A != 1){
            factor[i].push_back(A);
            prime.push_back(A);
        }
    }
    sort(all(prime));
    prime.erase(unique(all(prime)), prime.end());
    int table[prime.size()][N + 1];
    for(int i = 0; i < prime.size(); i++){
        for(int j = 0; j < N; j++){
            table[i][j + 1] = 0;
        }
    }
    for(int i = 0; i < N; i++){
        for(int j: factor[i]){
            int pos = int(lower_bound(all(prime), j) - prime.begin());
            table[pos][i + 1]++;
        }
    }
    for(int i = 0; i < prime.size(); i++){
        for(int j = 0; j < N; j++){
            table[i][j + 1] += table[i][j];
        }
    }
    for(int i = 0; i < N; i++){
        is_0[i + 1] += is_0[i];
    }
    int Q;
    cin >> Q;
    for(int i = 0; i < Q; i++){
        int P, L, R;
        cin >> P >> L >> R;
        L--;
        if(is_0[R] - is_0[L]){
            cout << "Yes" << endl;
            goto next;
        }
        for(int j: prime){
            int divide = 0;
            while(P % j == 0){
                P /= j;
                divide++;
            }
            if(divide){
                int pos = int(lower_bound(all(prime), j) - prime.begin());
                if(table[pos][R] - table[pos][L] < divide){
                    cout << "NO" << endl;
                    goto next;
                }
            }
        }
        if(P != 1){
            cout << "NO" << endl;
        }else{
            cout << "Yes" << endl;
        }
    next:;
    }
}
0