結果
問題 | No.856 増える演算 |
ユーザー | 👑 hos.lyric |
提出日時 | 2019-07-26 22:50:33 |
言語 | D (dmd 2.106.1) |
結果 |
AC
|
実行時間 | 526 ms / 3,153 ms |
コード長 | 9,447 bytes |
コンパイル時間 | 1,540 ms |
コンパイル使用メモリ | 159,356 KB |
実行使用メモリ | 32,736 KB |
最終ジャッジ日時 | 2024-06-22 02:07:25 |
合計ジャッジ時間 | 32,196 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 192 ms
26,440 KB |
testcase_01 | AC | 157 ms
26,640 KB |
testcase_02 | AC | 172 ms
26,656 KB |
testcase_03 | AC | 203 ms
26,984 KB |
testcase_04 | AC | 222 ms
28,444 KB |
testcase_05 | AC | 214 ms
28,176 KB |
testcase_06 | AC | 206 ms
26,848 KB |
testcase_07 | AC | 215 ms
27,760 KB |
testcase_08 | AC | 211 ms
27,696 KB |
testcase_09 | AC | 183 ms
26,860 KB |
testcase_10 | AC | 208 ms
26,816 KB |
testcase_11 | AC | 226 ms
28,528 KB |
testcase_12 | AC | 209 ms
27,720 KB |
testcase_13 | AC | 305 ms
28,388 KB |
testcase_14 | AC | 291 ms
26,772 KB |
testcase_15 | AC | 297 ms
28,904 KB |
testcase_16 | AC | 292 ms
26,236 KB |
testcase_17 | AC | 294 ms
26,804 KB |
testcase_18 | AC | 272 ms
26,364 KB |
testcase_19 | AC | 278 ms
28,376 KB |
testcase_20 | AC | 281 ms
27,380 KB |
testcase_21 | AC | 280 ms
26,728 KB |
testcase_22 | AC | 291 ms
27,920 KB |
testcase_23 | AC | 213 ms
24,632 KB |
testcase_24 | AC | 218 ms
24,840 KB |
testcase_25 | AC | 221 ms
24,440 KB |
testcase_26 | AC | 218 ms
24,016 KB |
testcase_27 | AC | 212 ms
23,140 KB |
testcase_28 | AC | 215 ms
24,200 KB |
testcase_29 | AC | 216 ms
24,492 KB |
testcase_30 | AC | 218 ms
24,196 KB |
testcase_31 | AC | 218 ms
24,220 KB |
testcase_32 | AC | 217 ms
25,272 KB |
testcase_33 | AC | 338 ms
25,044 KB |
testcase_34 | AC | 349 ms
25,164 KB |
testcase_35 | AC | 340 ms
25,284 KB |
testcase_36 | AC | 347 ms
24,696 KB |
testcase_37 | AC | 341 ms
25,036 KB |
testcase_38 | AC | 327 ms
25,140 KB |
testcase_39 | AC | 337 ms
24,228 KB |
testcase_40 | AC | 344 ms
24,508 KB |
testcase_41 | AC | 335 ms
24,012 KB |
testcase_42 | AC | 347 ms
25,272 KB |
testcase_43 | AC | 338 ms
24,304 KB |
testcase_44 | AC | 302 ms
23,516 KB |
testcase_45 | AC | 338 ms
23,476 KB |
testcase_46 | AC | 339 ms
24,024 KB |
testcase_47 | AC | 334 ms
23,648 KB |
testcase_48 | AC | 340 ms
25,460 KB |
testcase_49 | AC | 331 ms
24,476 KB |
testcase_50 | AC | 341 ms
25,460 KB |
testcase_51 | AC | 349 ms
25,060 KB |
testcase_52 | AC | 345 ms
24,716 KB |
testcase_53 | AC | 486 ms
27,332 KB |
testcase_54 | AC | 450 ms
25,352 KB |
testcase_55 | AC | 479 ms
27,216 KB |
testcase_56 | AC | 434 ms
24,336 KB |
testcase_57 | AC | 476 ms
26,456 KB |
testcase_58 | AC | 466 ms
26,564 KB |
testcase_59 | AC | 492 ms
27,976 KB |
testcase_60 | AC | 447 ms
25,244 KB |
testcase_61 | AC | 490 ms
27,220 KB |
testcase_62 | AC | 483 ms
27,588 KB |
testcase_63 | AC | 378 ms
24,184 KB |
testcase_64 | AC | 485 ms
26,548 KB |
testcase_65 | AC | 436 ms
25,112 KB |
testcase_66 | AC | 455 ms
25,908 KB |
testcase_67 | AC | 455 ms
27,192 KB |
testcase_68 | AC | 493 ms
27,252 KB |
testcase_69 | AC | 483 ms
27,368 KB |
testcase_70 | AC | 516 ms
27,772 KB |
testcase_71 | AC | 479 ms
28,360 KB |
testcase_72 | AC | 474 ms
26,412 KB |
testcase_73 | AC | 494 ms
31,716 KB |
testcase_74 | AC | 501 ms
31,548 KB |
testcase_75 | AC | 502 ms
31,396 KB |
testcase_76 | AC | 503 ms
31,912 KB |
testcase_77 | AC | 509 ms
32,572 KB |
testcase_78 | AC | 526 ms
32,712 KB |
testcase_79 | AC | 506 ms
32,004 KB |
testcase_80 | AC | 505 ms
32,048 KB |
testcase_81 | AC | 497 ms
32,736 KB |
testcase_82 | AC | 202 ms
31,812 KB |
コンパイルメッセージ
Main.d(332): Deprecation: function `std.math.exponential.log` is deprecated - `std.math.exponential.log` called with argument types `(long)` matches both `log(real)`, `log(double)`, and `log(float)`. Cast argument to floating point type instead. Main.d(332): Deprecation: function `std.math.exponential.log` is deprecated - `std.math.exponential.log` called with argument types `(long)` matches both `log(real)`, `log(double)`, and `log(float)`. Cast argument to floating point type instead.
ソースコード
import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.complex, std.container, std.math, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } struct ModInt(long M) { long x; this(in ModInt a) { x = a.x; } this(in long a) { x = a % M; if (x < 0) x += M; } ref ModInt opAssign(in long a) { return this = ModInt(a); } ref ModInt opOpAssign(string op)(in ModInt a) { static if (op == "+") { x += a.x; if (x >= M) x -= M; } else static if (op == "-") { x -= a.x; if (x < 0) x += M; } else static if (op == "*") { x *= a.x; x %= M; } else static assert(false); return this; } ref ModInt opOpAssign(string op)(in long a) { return mixin("this " ~ op ~ "= ModInt(a)"); } ModInt opUnary(string op)() const if (op == "-") { return ModInt(-x); } ModInt opBinary(string op, T)(in T a) const { return mixin("ModInt(this) " ~ op ~ "= a"); } ModInt opBinaryRight(string op)(in long a) const { return mixin("ModInt(a) " ~ op ~ "= this"); } string toString() const { return x.to!string; } } // a^-1 (mod 2^64) long modInv(long a) in { assert(a & 1, "modInv: a must be odd"); } do { long b = ((a << 1) + a) ^ 2; b *= 2 - a * b; b *= 2 - a * b; b *= 2 - a * b; b *= 2 - a * b; return b; } // a^-1 (mod m) long modInv(long a, long m) in { assert(m > 0, "modInv: m > 0 must hold"); } do { long b = m, x = 1, y = 0, t; for (; ; ) { t = a / b; a -= t * b; if (a == 0) { assert(b == 1 || b == -1, "modInv: gcd(a, m) != 1"); if (b == -1) { y = -y; } return (y < 0) ? (y + m) : y; } x -= t * y; t = b / a; b -= t * a; if (b == 0) { assert(a == 1 || a == -1, "modInv: gcd(a, m) != 1"); if (a == -1) { x = -x; } return (x < 0) ? (x + m) : x; } y -= t * x; } } // 2^-31 a (mod M) long montgomery(long M)(long a) if (1 <= M && M <= 0x7fffffff && (M & 1)) in { assert(0 <= a && a < (M << 31), "montgomery: 0 <= a < 2^31 M must hold"); } do { enum negInvM = -modInv(M) & 0x7fffffff; const b = (a + ((a * negInvM) & 0x7fffffff) * M) >> 31; return (b >= M) ? (b - M) : b; } // FFT on Z / M Z with Montgomery multiplication (x -> 2^31 x) // G: primitive 2^K-th root of unity class FFT(long M, int K, long G) if (is(typeof(montgomery!(M)(0))) && K >= 0 && 0 < G && G < M) { import std.algorithm : swap; import core.bitop : bsf; int n, invN; long[] g; this(int n) in { assert(!(n & (n - 1)), "FFT.this: n must be a power of 2"); assert(4 <= n && n <= 1 << K, "FFT.this: 4 <= n <= 2^K must hold"); } do { this.n = n; this.invN = ((1L << 31) / n) % M; g.length = n + 1; g[0] = (1L << 31) % M; g[1] = (G << 31) % M; foreach (_; 0 .. K - bsf(n)) { g[1] = montgomery!(M)(g[1] * g[1]); } foreach (i; 2 .. n + 1) { g[i] = montgomery!(M)(g[i - 1] * g[1]); } assert(g[0] != g[n >> 1] && g[0] == g[n], "FFT.this: G must be a primitive 2^K-th root of unity"); for (int i = 0, j = 0; i < n >> 1; ++i) { if (i < j) { swap(g[i], g[j]); swap(g[n - i], g[n - j]); } for (int m = n >> 1; (m >>= 1) && !((j ^= m) & m); ) {} } } void fftMontgomery(long[] x, bool inv) in { assert(x.length == n, "FFT.fftMontgomery: |x| = n must hold"); } do { foreach_reverse (h; 0 .. bsf(n)) { const l = 1 << h; foreach (i; 0 .. n >> 1 >> h) { const gI = g[inv ? (n - i) : i]; foreach (j; i << 1 << h .. ((i << 1) + 1) << h) { const t = montgomery!(M)(gI * x[j + l]); if ((x[j + l] = x[j] - t) < 0) { x[j + l] += M; } if ((x[j] += t) >= M) { x[j] -= M; } } } } for (int i = 0, j = 0; i < n; ++i) { if (i < j) { swap(x[i], x[j]); } for (int m = n; (m >>= 1) && !((j ^= m) & m); ) {} } if (inv) { foreach (i; 0 .. n) { x[i] = montgomery!(M)(invN * x[i]); } } } long[] convolution(long[] a, long[] b) in { assert(a.length <= n, "FFT.convolution: |a| <= n must hold"); assert(b.length <= n, "FFT.convolution: |b| <= n must hold"); } do { auto x = new long[n], y = new long[n]; foreach (i; 0 .. a.length) { const t = a[i] % M; x[i] = (((t < 0) ? (t + M) : t) << 31) % M; } foreach (i; 0 .. b.length) { const t = b[i] % M; y[i] = (((t < 0) ? (t + M) : t) << 31) % M; } fftMontgomery(x, false); fftMontgomery(y, false); foreach (i; 0 .. n) { x[i] = montgomery!(M)(x[i] * y[i]); } fftMontgomery(x, true); foreach (i; 0 .. n) { x[i] = montgomery!(M)(x[i]); } return x; } } // P0 P1 P2 > 2^90, P0 + P1 + P2 = 2^32 + 3 enum FFT_P0 = 2013265921L; // 2^27 15 + 1 enum FFT_P1 = 1811939329L; // 2^26 27 + 1 enum FFT_P2 = 469762049L; // 2^26 7 + 1 alias FFT0 = FFT!(FFT_P0, 27, 440564289L); // 31^15 alias FFT1 = FFT!(FFT_P1, 26, 72705542L); // 13^27 alias FFT2 = FFT!(FFT_P2, 26, 2187L); // 3^ 7 // Convolution of a and b (indices mod fft0.n) // modify a and b so that 0 <= a[i] < m, 0 <= b[i] < m long[] convolution(FFT0 fft0, FFT1 fft1, FFT2 fft2, long[] a, long[] b, long m) in { assert(fft0.n == fft1.n && fft0.n == fft2.n, "convolution: fft0.n = fft1.n = fft2.n must hold"); assert(1 <= m && m <= 0x7fffffff, "convolution: 1 <= m < 2^31 must hold"); } do { enum FFT_INV01 = modInv(FFT_P0, FFT_P1); enum FFT_INV012 = modInv(FFT_P0 * FFT_P1, FFT_P2); foreach (i; 0 .. a.length) { if ((a[i] %= m) < 0) { a[i] += m; } } foreach (i; 0 .. b.length) { if ((b[i] %= m) < 0) { b[i] += m; } } const x0 = fft0.convolution(a, b); const x1 = fft1.convolution(a, b); const x2 = fft2.convolution(a, b); auto x = new long[fft0.n]; foreach (i; 0 .. fft0.n) { auto y0 = x0[i] % FFT_P0; auto y1 = (FFT_INV01 * (x1[i] - y0)) % FFT_P1; if (y1 < 0) { y1 += FFT_P1; } auto y2 = (FFT_INV012 * ((x2[i] - y0 - FFT_P0 * y1) % FFT_P2)) % FFT_P2; if (y2 < 0) { y2 += FFT_P2; } x[i] = (y0 + FFT_P0 * y1 + ((FFT_P0 * FFT_P1) % m) * y2) % m; } return x; } enum long MO = 1000000007; alias Mint = ModInt!MO; Mint power(Mint a, long e) { Mint x = a, y = 1; for (; e; e >>= 1) { if (e & 1) y *= x; x *= x; } return y; } enum L = 2^^18; int N; long[] A; void main() { auto fft = new Fft(L); auto fft0 = new FFT0(L); auto fft1 = new FFT1(L); auto fft2 = new FFT2(L); try { for (; ; ) { N = readInt(); A = new long[N]; foreach (i; 0 .. N) { A[i] = readInt(); } // auto f = new real[L]; // f[] = 0.0; // foreach (i; 0 .. N) { // f[cast(int)(A[i])] += 1; // } // auto ff = fft.fft!real(f); // foreach (l; 0 .. L) { // ff[l] = ff[l] * ff[l]; // } // auto g = fft.inverseFft!real(ff); // pragma(msg,typeof(g)); // foreach (i; 0 .. N) { // g[cast(int)(2 * A[i])] -= 1.0; // } // auto cnt = new long[L]; // foreach (l; 0 .. L) { // cnt[l] = cast(long)(round(g[l].re / 2.0)); // } // debug { // writeln("cnt = ", cnt[0 .. 20]); // } auto f = new long[L]; foreach (i; 0 .. N) { ++f[cast(int)(A[i])]; } auto g = convolution(fft0, fft1, fft2, f, f, 2 * (MO - 1)); foreach (i; 0 .. N) { const l = cast(int)(2 * A[i]); --g[l]; if (g[l] < 0) { g[l] += 2 * (MO - 1); } } foreach (l; 0 .. L) { assert(g[l] % 2 == 0); g[l] /= 2; } debug { writeln("g = ", g[0 .. 20]); } Mint ans = 1; foreach (l; 0 .. L) { ans *= power(Mint(l), g[l]); } long ASum; foreach_reverse (i; 0 .. N) { ans *= power(Mint(A[i]), ASum); ASum += A[i]; } long AMin = long.max; auto opt = tuple(real.infinity, 0L, 0L); foreach_reverse (i; 0 .. N) { if (i < N - 1) { chmin(opt, tuple(log(A[i] + AMin) + log(A[i]) * AMin, A[i], AMin)); } chmin(AMin, A[i]); } debug { writeln("opt = ", opt); } Mint dnm = (opt[1] + opt[2]) * power(Mint(opt[1]), opt[2]); ans *= modInv(dnm.x, MO); writeln(ans); } } catch (EOFException e) { } }