結果
| 問題 |
No.854 公平なりんご分配
|
| コンテスト | |
| ユーザー |
りあん
|
| 提出日時 | 2019-07-26 23:14:41 |
| 言語 | C#(csc) (csc 3.9.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 14,448 bytes |
| コンパイル時間 | 1,082 ms |
| コンパイル使用メモリ | 126,116 KB |
| 実行使用メモリ | 170,616 KB |
| 最終ジャッジ日時 | 2024-07-02 09:30:24 |
| 合計ジャッジ時間 | 26,799 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 2 |
| other | WA * 92 |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.IO;
using System.Text;
using System.Diagnostics;
using static util;
using P = pair<int, int>;
using Binary = System.Func<System.Linq.Expressions.ParameterExpression,
System.Linq.Expressions.ParameterExpression,
System.Linq.Expressions.BinaryExpression>;
using Unary = System.Func<System.Linq.Expressions.ParameterExpression,
System.Linq.Expressions.UnaryExpression>;
class Program {
static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
static Scan sc = new Scan();
const int M = 1000000007;
const int M2 = 998244353;
const long LM = 1L << 60;
const double eps = 1e-11;
static void Main(string[] args)
{
int n = sc.Int;
var a = sc.IntArr;
var pr = MyMath.getprimes(2000);
int m = pr.Count;
DBG(m);
var ims = new int[n + 1][];
ims[0] = new int[m];
var zims = new int[n + 1];
for (int i = 0; i < n; i++)
{
ims[i + 1] = ims[i].copy();
zims[i + 1] = zims[i];
int p = a[i];
if (p == 0) {
++zims[i + 1];
continue;
}
for (int j = 0; j < m; j++)
{
while (p % pr[j] == 0) {
p /= pr[j];
++ims[i + 1][j];
}
}
}
int q = sc.Int;
for (int i = 0; i < q; i++)
{
int p, l, r;
sc.Multi(out p, out l, out r);
--l;
if (zims[r] - zims[l] > 0) {
Prt("Yes");
continue;
}
for (int j = 0; j < m; j++)
{
int c = ims[r][j] - ims[l][j];
while (p % pr[j] == 0) {
p /= pr[j];
--c;
}
if (c < 0) {
p = -1;
break;
}
}
if (p != 1) {
Prt("NO");
}
else {
Prt("Yes");
}
}
sw.Flush();
}
static void DBG(string a) => Console.WriteLine(a);
static void DBG<T>(IEnumerable<T> a) => DBG(string.Join(" ", a));
static void DBG(params object[] a) => DBG(string.Join(" ", a));
static void Prt(string a) => sw.WriteLine(a);
static void Prt<T>(IEnumerable<T> a) => Prt(string.Join(" ", a));
static void Prt(params object[] a) => Prt(string.Join(" ", a));
}
class pair<T, U> : IComparable<pair<T, U>> {
public T v1;
public U v2;
public pair() : this(default(T), default(U)) {}
public pair(T v1, U v2) { this.v1 = v1; this.v2 = v2; }
public int CompareTo(pair<T, U> a) {
int c = Comparer<T>.Default.Compare(v1, a.v1);
return c != 0 ? c : Comparer<U>.Default.Compare(v2, a.v2);
}
public override string ToString() => v1 + " " + v2;
public void Deconstruct(out T a, out U b) { a = v1; b = v2; }
public static bool operator>(pair<T, U> a, pair<T, U> b) => a.CompareTo(b) > 0;
public static bool operator<(pair<T, U> a, pair<T, U> b) => a.CompareTo(b) < 0;
public static bool operator>=(pair<T, U> a, pair<T, U> b) => a.CompareTo(b) >= 0;
public static bool operator<=(pair<T, U> a, pair<T, U> b) => a.CompareTo(b) <= 0;
}
static class util {
public static pair<T, U> make_pair<T, U>(T v1, U v2) => new pair<T, U>(v1, v2);
public static T sq<T>(T a) => Operator<T>.Multiply(a, a);
public static T Max<T>(params T[] a) => a.Max();
public static T Min<T>(params T[] a) => a.Min();
public static bool inside(int i, int j, int h, int w) => i >= 0 && i < h && j >= 0 && j < w;
static readonly int[] dd = { 0, 1, 0, -1 };
static readonly string dstring = "RDLU";
public static P[] adjacents(this P p) => adjacents(p.v1, p.v2);
public static P[] adjacents(this P p, int h, int w) => adjacents(p.v1, p.v2, h, w);
public static pair<P, char>[] adjacents_with_str(int i, int j)
=> Enumerable.Range(0, dd.Length).Select(k => new pair<P, char>(new P(i + dd[k], j + dd[k ^ 1]), dstring[k])).ToArray();
public static pair<P, char>[] adjacents_with_str(int i, int j, int h, int w)
=> Enumerable.Range(0, dd.Length).Select(k => new pair<P, char>(new P(i + dd[k], j + dd[k ^ 1]), dstring[k])).Where(p => inside(p.v1.v1, p.v1.v2, h, w)).ToArray();
public static P[] adjacents(int i, int j)
=> Enumerable.Range(0, dd.Length).Select(k => new P(i + dd[k], j + dd[k ^ 1])).ToArray();
public static P[] adjacents(int i, int j, int h, int w)
=> Enumerable.Range(0, dd.Length).Select(k => new P(i + dd[k], j + dd[k ^ 1])).Where(p => inside(p.v1, p.v2, h, w)).ToArray();
public static void Assert(bool cond) { if (!cond) throw new Exception(); }
public static Dictionary<T, int> compress<T>(this IEnumerable<T> a)
=> a.Distinct().OrderBy(v => v).Select((v, i) => new { v, i }).ToDictionary(p => p.v, p => p.i);
public static Dictionary<T, int> compress<T>(params IEnumerable<T>[] a) => compress(a.Aggregate(Enumerable.Union));
public static void swap<T>(ref T a, ref T b) where T : struct { var t = a; a = b; b = t; }
public static void swap<T>(this IList<T> a, int i, int j) where T : struct { var t = a[i]; a[i] = a[j]; a[j] = t; }
public static T[] copy<T>(this IList<T> a) {
var ret = new T[a.Count];
for (int i = 0; i < a.Count; i++) ret[i] = a[i];
return ret;
}
}
static class Operator<T> {
static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x");
static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y");
public static readonly Func<T, T, T> Add = Lambda(Expression.Add);
public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract);
public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply);
public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide);
public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus);
public static readonly Func<T, T> Negate = Lambda(Expression.Negate);
public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile();
public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile();
}
class Scan {
StreamReader sr;
public Scan() { sr = new StreamReader(Console.OpenStandardInput()); }
public Scan(string path) { sr = new StreamReader(path); }
public int Int => int.Parse(Str);
public long Long => long.Parse(Str);
public double Double => double.Parse(Str);
public string Str => sr.ReadLine().Trim();
public pair<T, U> Pair<T, U>() {
T a; U b;
Multi(out a, out b);
return new pair<T, U>(a, b);
}
public P P => Pair<int, int>();
public int[] IntArr => StrArr.Select(int.Parse).ToArray();
public long[] LongArr => StrArr.Select(long.Parse).ToArray();
public double[] DoubleArr => StrArr.Select(double.Parse).ToArray();
public string[] StrArr => Str.Split(new[]{' '}, StringSplitOptions.RemoveEmptyEntries);
bool eq<T, U>() => typeof(T).Equals(typeof(U));
T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T));
T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s))
: eq<T, long>() ? ct<T, long>(long.Parse(s))
: eq<T, double>() ? ct<T, double>(double.Parse(s))
: eq<T, char>() ? ct<T, char>(s[0])
: ct<T, string>(s);
public void Multi<T>(out T a) => a = cv<T>(Str);
public void Multi<T, U>(out T a, out U b)
{ var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
public void Multi<T, U, V>(out T a, out U b, out V c)
{ var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
{ var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
{ var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
}
static class MyMath
{
public static long Mod = 1000000007;
public static bool isprime(long a) {
if (a < 2) return false;
for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
return true;
}
public static bool[] sieve(int n) {
var p = new bool[n + 1];
for (int i = 2; i <= n; i++) p[i] = true;
for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false;
return p;
}
public static bool[] segmentSieve(long l, long r) {
int sqn = (int)Math.Sqrt(r + 9);
var ps = getprimes(sqn);
var sieve = new bool[r - l + 1];
for (long i = l; i <= r; i++) sieve[i - l] = true;
foreach (long p in ps)
{
if (p * p > r) break;
for (long i = p >= l ? p * p : (l + p - 1) / p * p; i <= r; i += p) sieve[i - l] = false;
}
return sieve;
}
public static bool[] segmentSieve(long l, long r, List<int> ps) {
var sieve = new bool[r - l + 1];
for (long i = l; i <= r; i++) sieve[i - l] = true;
foreach (long p in ps)
{
if (p * p > r) break;
for (long i = p >= l ? p * p : (l + p - 1) / p * p; i <= r; i += p) sieve[i - l] = false;
}
return sieve;
}
public static List<int> getprimes(int n) {
var prs = new List<int>();
var p = sieve(n);
for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i);
return prs;
}
public static long pow(long a, long b, long mod) {
a %= mod;
// if (a == 0) return 0;
if (b == 0) return 1;
var t = pow(a, b / 2, mod);
if ((b & 1) == 0) return t * t % mod;
return t * t % mod * a % mod;
}
public static long pow(long a, long b) {
a %= Mod;
// if (a == 0) return 0;
if (b == 0) return 1;
var t = pow(a, b / 2);
if ((b & 1) == 0) return t * t % Mod;
return t * t % Mod * a % Mod;
}
public static long inv(long a) => pow(a, Mod - 2);
public static long gcd(long a, long b) {
while (b > 0) { var t = a % b; a = b; b = t; } return a;
}
// a x + b y = gcd(a, b)
public static long extgcd(long a, long b, out long x, out long y) {
long g = a; x = 1; y = 0;
if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; }
return g;
}
// 中国剰余定理
// リターン値を (r, m) とすると解は x ≡ r (mod. m)
// 解なしの場合は (0, -1) をリターン
public static pair<long, long> chineserem(IList<long> b, IList<long> m) {
long r = 0, M = 1;
for (int i = 0; i < b.Count; ++i) {
long p, q;
long d = extgcd(M, m[i], out p, out q); // p is inv of M/d (mod. m[i]/d)
if ((b[i] - r) % d != 0) return new pair<long, long>(0, -1);
long tmp = (b[i] - r) / d * p % (m[i]/d);
r += M * tmp;
M *= m[i]/d;
}
return new pair<long, long>((r % M + M) % M, M);
}
public static long lcm(long a, long b) => a / gcd(a, b) * b;
static long[] facts, invs;
public static void setfacts(int n) {
facts = new long[n + 1];
facts[0] = 1;
for (int i = 1; i <= n; i++) facts[i] = facts[i - 1] * i % Mod;
invs = new long[n + 1];
invs[n] = inv(facts[n]);
for (int i = n; i > 0 ; i--) invs[i - 1] = invs[i] * i % Mod;
}
public static long perm(long n, long r) {
if (n < 0 || r < 0 || r > n) return 0;
if (facts != null && facts.Length > n) return facts[n] * invs[n - r] % Mod;
long numer = 1;
for (long i = 0; i < r; i++) {
numer = numer * ((n - i) % Mod) % Mod;
}
return numer;
}
public static long comb(long n, long r) {
if (n < 0 || r < 0 || r > n) return 0;
if (facts != null && facts.Length > n) return facts[n] * invs[r] % Mod * invs[n - r] % Mod;
if (n - r < r) r = n - r;
long numer = 1, denom = 1;
for (long i = 0; i < r; i++) {
numer = numer * ((n - i) % Mod) % Mod;
denom = denom * ((i + 1) % Mod) % Mod;
}
return numer * inv(denom) % Mod;
}
public static long[][] getcombs(int n) {
var ret = new long[n + 1][];
for (int i = 0; i <= n; i++) {
ret[i] = new long[i + 1];
ret[i][0] = ret[i][i] = 1;
for (int j = 1; j < i; j++) ret[i][j] = (ret[i - 1][j - 1] + ret[i - 1][j]) % Mod;
}
return ret;
}
// nC0, nC2, ..., nCn
public static long[] getcomb(int n) {
var ret = new long[n + 1];
ret[0] = 1;
for (int i = 0; i < n; i++) ret[i + 1] = ret[i] * (n - i) % Mod * inv(i + 1) % Mod;
return ret;
}
public static bool nextPermutation<T>(IList<T> p) where T : struct, IComparable<T> {
for (int i = p.Count - 2; i >= 0; --i) {
if (p[i].CompareTo(p[i + 1]) < 0) {
for (int j = p.Count - 1; ; --j) {
if (p[j].CompareTo(p[i]) > 0) {
p.swap(i, j);
for(++i, j = p.Count - 1; i < j; ++i, --j)
p.swap(i, j);
return true;
}
}
}
}
return false;
}
public static bool nextPermutation<T>(IList<T> p, Comparison<T> compare) where T : struct {
for (int i = p.Count - 2; i >= 0; --i) {
if (compare(p[i], p[i + 1]) < 0) {
for (int j = p.Count - 1; ; --j) {
if (compare(p[j], p[i]) > 0) {
p.swap(i, j);
for (++i, j = p.Count - 1; i < j; ++i, --j)
p.swap(i, j);
return true;
}
}
}
}
return false;
}
}
りあん