結果

問題 No.854 公平なりんご分配
ユーザー koba-e964koba-e964
提出日時 2019-07-26 23:38:39
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 1,560 ms / 3,153 ms
コード長 6,670 bytes
コンパイル時間 11,525 ms
コンパイル使用メモリ 401,972 KB
実行使用メモリ 123,776 KB
最終ジャッジ日時 2024-07-02 10:05:45
合計ジャッジ時間 26,399 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 0 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 1 ms
5,376 KB
testcase_14 AC 1 ms
5,376 KB
testcase_15 AC 1 ms
5,376 KB
testcase_16 AC 1 ms
5,376 KB
testcase_17 AC 1 ms
5,376 KB
testcase_18 AC 1 ms
5,376 KB
testcase_19 AC 1 ms
5,376 KB
testcase_20 AC 1 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 3 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 4 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 AC 4 ms
5,376 KB
testcase_27 AC 3 ms
5,376 KB
testcase_28 AC 3 ms
5,376 KB
testcase_29 AC 2 ms
5,376 KB
testcase_30 AC 3 ms
5,376 KB
testcase_31 AC 4 ms
5,376 KB
testcase_32 AC 66 ms
27,264 KB
testcase_33 AC 75 ms
15,616 KB
testcase_34 AC 178 ms
36,992 KB
testcase_35 AC 110 ms
29,312 KB
testcase_36 AC 38 ms
5,376 KB
testcase_37 AC 62 ms
25,600 KB
testcase_38 AC 42 ms
21,120 KB
testcase_39 AC 343 ms
39,552 KB
testcase_40 AC 79 ms
13,824 KB
testcase_41 AC 120 ms
24,064 KB
testcase_42 AC 157 ms
36,352 KB
testcase_43 AC 207 ms
25,344 KB
testcase_44 AC 221 ms
33,920 KB
testcase_45 AC 97 ms
8,704 KB
testcase_46 AC 323 ms
33,792 KB
testcase_47 AC 79 ms
19,456 KB
testcase_48 AC 136 ms
35,712 KB
testcase_49 AC 120 ms
36,608 KB
testcase_50 AC 54 ms
25,600 KB
testcase_51 AC 300 ms
35,328 KB
testcase_52 AC 100 ms
17,024 KB
testcase_53 AC 50 ms
16,256 KB
testcase_54 AC 118 ms
19,456 KB
testcase_55 AC 32 ms
16,128 KB
testcase_56 AC 33 ms
16,768 KB
testcase_57 AC 57 ms
14,080 KB
testcase_58 AC 76 ms
7,424 KB
testcase_59 AC 23 ms
12,416 KB
testcase_60 AC 67 ms
14,336 KB
testcase_61 AC 21 ms
5,376 KB
testcase_62 AC 77 ms
12,416 KB
testcase_63 AC 43 ms
13,056 KB
testcase_64 AC 15 ms
6,016 KB
testcase_65 AC 70 ms
32,000 KB
testcase_66 AC 36 ms
9,728 KB
testcase_67 AC 87 ms
21,632 KB
testcase_68 AC 59 ms
10,496 KB
testcase_69 AC 62 ms
38,912 KB
testcase_70 AC 27 ms
13,568 KB
testcase_71 AC 30 ms
14,848 KB
testcase_72 AC 50 ms
5,376 KB
testcase_73 AC 44 ms
25,984 KB
testcase_74 AC 105 ms
31,872 KB
testcase_75 AC 62 ms
15,104 KB
testcase_76 AC 63 ms
25,216 KB
testcase_77 AC 76 ms
35,840 KB
testcase_78 AC 91 ms
11,776 KB
testcase_79 AC 103 ms
22,272 KB
testcase_80 AC 100 ms
23,424 KB
testcase_81 AC 58 ms
24,192 KB
testcase_82 AC 315 ms
123,776 KB
testcase_83 AC 552 ms
123,776 KB
testcase_84 AC 533 ms
123,772 KB
testcase_85 AC 556 ms
123,776 KB
testcase_86 AC 317 ms
123,776 KB
testcase_87 AC 311 ms
123,776 KB
testcase_88 AC 323 ms
123,648 KB
testcase_89 AC 316 ms
123,776 KB
testcase_90 AC 321 ms
123,648 KB
testcase_91 AC 320 ms
123,628 KB
testcase_92 AC 1,560 ms
123,776 KB
testcase_93 AC 1,530 ms
123,648 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: function `gcd` is never used
  --> src/main.rs:63:12
   |
63 |     pub fn gcd(mut x: i64, mut y: i64) -> i64 {
   |            ^^^
   |
   = note: `#[warn(dead_code)]` on by default

warning: function `add_mod` is never used
  --> src/main.rs:79:8
   |
79 |     fn add_mod(x: i64, y: i64, n: i64) -> i64 {
   |        ^^^^^^^

warning: function `mul_mod` is never used
  --> src/main.rs:84:8
   |
84 |     fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 {
   |        ^^^^^^^

warning: function `mod_pow` is never used
  --> src/main.rs:99:8
   |
99 |     fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 {
   |        ^^^^^^^

warning: function `is_prime` is never used
   --> src/main.rs:112:12
    |
112 |     pub fn is_prime(n: i64) -> bool {
    |            ^^^^^^^^

warning: function `pollard_rho` is never used
   --> src/main.rs:139:8
    |
139 |     fn pollard_rho(n: i64, c: &mut i64) -> i64 {
    |        ^^^^^^^^^^^

warning: function `factorize` is never used
   --> src/main.rs:161:12
    |
161 |     pub fn factorize(x: i64) -> Vec<(i64, usize)> {
    |            ^^^^^^^^^

ソースコード

diff #

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    ($($r:tt)*) => {
        let stdin = std::io::stdin();
        let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
        let mut next = move || -> String{
            bytes
                .by_ref()
                .map(|r|r.unwrap() as char)
                .skip_while(|c|c.is_whitespace())
                .take_while(|c|!c.is_whitespace())
                .collect()
        };
        input_inner!{next, $($r)*}
    };
}

macro_rules! input_inner {
    ($next:expr) => {};
    ($next:expr, ) => {};

    ($next:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($next, $t);
        input_inner!{$next $($r)*}
    };
}

macro_rules! read_value {
    ($next:expr, ( $($t:tt),* )) => {
        ( $(read_value!($next, $t)),* )
    };

    ($next:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    };

    ($next:expr, chars) => {
        read_value!($next, String).chars().collect::<Vec<char>>()
    };

    ($next:expr, usize1) => {
        read_value!($next, usize) - 1
    };

    ($next:expr, [ $t:tt ]) => {{
        let len = read_value!($next, usize);
        (0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    }};

    ($next:expr, $t:ty) => {
        $next().parse::<$t>().expect("Parse error")
    };
}

mod pollard_rho {
    use std::collections::HashMap;
    /// binary gcd
    pub fn gcd(mut x: i64, mut y: i64) -> i64 {
        if y == 0 { return x; }
        if x == 0 { return y; }
        let mut sh = 0;
        while ((x | y) & 1) == 0 {
            x >>= 1; y >>= 1; sh += 1;
        }
        while (x & 1) == 0 { x >>= 1; }
        while y != 0 {
            while (y & 1) == 0 { y >>= 1; }
            if x > y { let t = x; x = y; y = t; }
            y -= x;
        }
        x << sh
    }

    fn add_mod(x: i64, y: i64, n: i64) -> i64 {
        let z = x + y;
        if z >= n { z - n } else { z }
    }

    fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 {
        assert!(x >= 0);
        assert!(x < n);
        let mut sum = 0;
        let mut cur = x;
        while y > 0 {
            if (y & 1) == 1 {
                sum = add_mod(sum, cur, n);
            }
            cur = add_mod(cur, cur, n);
            y >>= 1;
        }
        sum
    }

    fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 {
        let mut prod = if n == 1 { 0 } else { 1 };
        let mut cur = x % n;
        while e > 0 {
            if (e & 1) == 1 {
                prod = mul_mod(prod, cur, n);
            }
            cur = mul_mod(cur, cur, n);
            e >>= 1;
        }
        prod
    }

    pub fn is_prime(n: i64) -> bool {
        if n <= 1 { return false; }
        let small = [2, 3, 5, 7, 11, 13];
        if small.iter().any(|&u| u == n) { return true; }
        if small.iter().any(|&u| n % u == 0) { return false; }
        let mut d = n - 1;
        let mut e = 0;
        while (d & 1) == 0 {
            d >>= 1;
            e += 1;
        }
        let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];
        a.iter().all(|&a| {
            if a >= n { return true; }
            let mut x = mod_pow(a, d, n);
            if x == 1 { return true; }
            for _ in 0 .. e {
                if x == n - 1 {
                    return true;
                }
                x = mul_mod(x, x, n);
                if x == 1 { return false; }
            }
            x == 1
        })
    }

    fn pollard_rho(n: i64, c: &mut i64) -> i64 {
        if n % 2 == 0 { return 2; }
        loop {
            let mut x: i64 = 2;
            let mut y = 2;
            let mut d = 1;
            let cc = *c;
            let f = |i| add_mod(mul_mod(i, i, n), cc, n);
            while d == 1 {
                x = f(x);
                y = f(f(y));
                d = gcd((x - y).abs(), n);
            }
            if d == n {
                *c += 1;
                continue;
            }
            return d;
        }
    }

    /// Outputs (p, e) in p's ascending order.
    pub fn factorize(x: i64) -> Vec<(i64, usize)> {
        if x <= 1 {
            return Vec::new();
        }
        let mut hm = HashMap::new();
        let mut pool = vec![x];
        let mut c = 1;
        while let Some(u) = pool.pop() {
            if is_prime(u) {
                *hm.entry(u).or_insert(0) += 1;
                continue;
            }
            let p = pollard_rho(u, &mut c);
            pool.push(p);
            pool.push(u / p);
        }
        let mut v: Vec<_> = hm.into_iter().collect();
        v.sort();
        v
    }
} // mod pollard_rho

fn solve() {
    let out = std::io::stdout();
    let mut out = BufWriter::new(out.lock());
    macro_rules! puts {
        ($($format:tt)*) => (write!(out,$($format)*).unwrap());
    }
    input! {
        n: usize,
        a: [i32; n],
        plr: [(i64, usize1, usize)],
    }
    const W: usize = 2001;
    let mut fac = vec![0; W];
    for i in 2..W {
        fac[i] = i;
    }
    for i in 2..W {
        if fac[i] != i { continue; }
        for j in 2..(W - 1) / i + 1 {
            fac[i * j] = i;
        }
    }
    let primes: Vec<_> = (2..W).filter(|&i| fac[i] == i).collect();
    let m = primes.len();
    let mut inv = vec![0; W];
    for i in 0..m {
        inv[primes[i]] = i;
    }
    let mut acc = vec![vec![0i32; n + 1]; m];
    let mut zero = vec![0i32; n + 1];
    for i in 0..n {
        for j in 0..m {
            acc[j][i + 1] = acc[j][i];
        }
        zero[i + 1] = zero[i];
        if a[i] == 0 {
            zero[i + 1] += 1;
            continue;
        }
        let mut v = a[i];
        while v > 1 {
            let p = fac[v as usize];
            v /= p as i32;
            let idx = inv[p];
            acc[idx][i + 1] += 1;
        }
    }
    for &(p, l, r) in &plr {
        let mut ans = true;
        if zero[r] == zero[l] {
            let mut v = p;
            for i in 0..m {
                let mut e = 0;
                let p = primes[i] as i64;
                while v % p == 0 {
                    v /= p;
                    e += 1;
                }
                let diff = acc[i][r] - acc[i][l];
                if diff < e as i32 {
                    ans = false;
                }
            }
            if v > 1 {
                ans = false;
            }
        }
        puts!("{}\n", if ans { "Yes" } else { "NO" });
    }
}

fn main() {
    solve();
}
0