結果
問題 | No.856 増える演算 |
ユーザー |
|
提出日時 | 2019-08-10 16:38:28 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,091 bytes |
コンパイル時間 | 2,203 ms |
コンパイル使用メモリ | 182,812 KB |
実行使用メモリ | 29,220 KB |
最終ジャッジ日時 | 2024-07-19 17:11:43 |
合計ジャッジ時間 | 73,511 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 79 WA * 1 |
ソースコード
// includes#include <bits/stdc++.h>// macros#define pb emplace_back#define mk make_pair#define pq priority_queue#define FOR(i, a, b) for(int i=(a);i<(b);++i)#define rep(i, n) FOR(i, 0, n)#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)#define vrep(v, i) for(int i = 0; i < (v).size(); i++)#define all(x) (x).begin(),(x).end()#define sz(x) ((int)(x).size())#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())#define FI first#define SE second#define bit(n) (1LL<<(n))#define INT(n) int n; cin >> n;#define LL(n) ll n; cin >> n;#define DOUBLE(n) double n; cin >> n;using namespace std;template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr =itr; if(++titr != st.end())os << " ";} return os;}template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr;auto titr = itr; if(++titr != st.end())os << " ";} return os;}template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; autotitr = itr; if(++titr != st.end())os << " ";} return os;}template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os <<*itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os <<itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end();++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}// typesusing ll = long long int;using P = pair<int, int>;using Pli = pair<ll, int>;using Pil = pair<int, ll>;using Pll = pair<ll, ll>;using Pdd = pair<double, double>;using cd = complex<double>;// constantsconst int inf = 1e9;const ll linf = 1LL << 50;const double EPS = 1e-10;const int mod = 1e9 + 7;const int dx[4] = {-1, 0, 1, 0};const int dy[4] = {0, -1, 0, 1};// solvetemplate <typename T>T power(T a, T n, T mod) {n = n % (mod - 1);T res = 1;T tmp = n;T curr = a;while(tmp){if(tmp % 2 == 1){res = (T)(res * curr % mod);}curr = (T)(curr * curr % mod);tmp >>= 1;}return res;}template<typename T>T extgcd(T a, T b, T &x, T &y){T d = a;if(b != 0){d = extgcd(b, a % b, y, x);y -= (a / b) * x;}else{x = 1, y = 0;}return d;}template <typename T>T modinv(T a, T m){long long x = 0, y = 0;extgcd<long long>(a, m, x, y);x %= m;if(x < 0)x += m;return x;}template <int MOD, int g>struct NTT{int get_mod(){return MOD;}void _ntt(vector<long long> &f, bool inv=false){int n = f.size(), mask = n - 1;int h = power<long long>(g, (MOD - 1) / n, MOD);if(inv)h = modinv(h, MOD);vector<long long> tmp(n);for(int i = n >> 1; i >= 1; i >>= 1){long long zeta = power<long long>(h, i, MOD);long long w = 1;for(int j = 0; j < n; j += i){for(int k = 0; k < i; k++){tmp[j+k] = (f[((j<<1)&mask)+k] + w * f[(((j<<1)+i)&mask)+k] % MOD) % MOD;}w = w * zeta % MOD;}swap(f, tmp);}}void ntt(vector<long long> &f){_ntt(f, false);}void intt(vector<long long> &f){_ntt(f, true);int n = f.size();int ni = modinv(n, MOD);for(int i = 0; i < n; i++)f[i] = f[i] * ni % MOD;}vector<long long> convolution(vector<long long> f, vector<long long> h){int n = 1;while(n < int(f.size() + h.size()))n *= 2;f.resize(n, 0); h.resize(n, 0);ntt(f);ntt(h);for(int i = 0; i < n; i++)f[i] = f[i] * h[i] % MOD;intt(f);return f;}};using NTT1 = NTT<167772161, 3>;using NTT2 = NTT<469762049, 3>;using NTT3 = NTT<1224736769, 3>;template <typename T>long long garner(vector<T> b, vector<T> m, T MOD){m.emplace_back(MOD);vector<long long> coef(m.size(), 1);vector<long long> consts(m.size(), 0);for(int i = 0; i < b.size(); i++){long long t = ((b[i] - consts[i]) % m[i]) * modinv<long long>(coef[i], m[i]) % m[i];for(int j = i + 1; j < m.size(); j++){consts[j] = (consts[j] + t * coef[j] % m[j]) % m[j];coef[j] = coef[j] * m[i] % m[j];}}return consts.back();}vector<long long> arbitrary_mod_convolution(vector<long long> f, vector<long long> g, int MOD){for(size_t i = 0; i < f.size(); i++)f[i] %= MOD;for(size_t i = 0; i < g.size(); i++)g[i] %= MOD;NTT1 ntt1;NTT2 ntt2;NTT3 ntt3;auto x1 = ntt1.convolution(f, g);auto x2 = ntt2.convolution(f, g);auto x3 = ntt3.convolution(f, g);vector<long long> res(x1.size());vector<long long> b(3), m(3);m[0] = ntt1.get_mod();m[1] = ntt2.get_mod();m[2] = ntt3.get_mod();for(size_t i = 0; i < x1.size(); i++){b[0] = x1[i];b[1] = x2[i];b[2] = x3[i];res[i] = garner<long long>(b, m, MOD);}return res;}int main(int argc, char const* argv[]){ios_base::sync_with_stdio(false);cin.tie(0);cout << fixed << setprecision(20);INT(n); vector<ll> a(n); cin >> a;ll res = 1;ll sum = a[n-1];rrep(i, n - 1){res = res * power<ll>(a[i], sum, mod) % mod;sum += a[i];}vector<ll> b(2e5+1, 0);rep(i, n)b[a[i]]++;auto f = arbitrary_mod_convolution(b, b, mod);/*NTT1 ntt1;auto f = ntt1.convolution(b, b);*/rep(i, n)f[a[i] * 2]--;rep(i, sz(f))f[i] /= 2;/*rep(i, 10)cout << b[i] << "\n "[i + 1 != 10];rep(i, 10)cout << b[i] << "\n "[i + 1 != 10];rep(i, 10)cout << f[i] << "\n "[i + 1 != 10];*/FOR(i, 1, sz(f)){res = res * power<ll>(i, f[i], mod) % mod;}ll am = a[n-1];double mini = 1e18;ll prod = 1;rrep(i, n - 1){double tmp = log(a[i] + am) + am * log(a[i]);if(tmp < mini){mini = tmp;prod = (am + a[i]) * power<ll>(a[i], am, mod) % mod;}am = min(am, a[i]);}res = res * modinv<ll>(prod, mod) % mod;cout << res << endl;return 0;}