結果
問題 | No.186 中華風 (Easy) |
ユーザー | pazzle1230 |
提出日時 | 2019-08-11 20:00:44 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 3,007 bytes |
コンパイル時間 | 1,719 ms |
コンパイル使用メモリ | 173,152 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-19 18:35:13 |
合計ジャッジ時間 | 2,131 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> ::std::int64_t gcd(::std::int64_t a, ::std::int64_t b) { while (b != 0) { ::std::swap(a, b); b = b % a; } return a; } ::std::int64_t lcm(::std::int64_t a, ::std::int64_t b) { return a / gcd(a, b) * b; } ::std::pair<::std::int64_t, ::std::int64_t> extgcd(::std::int64_t a, ::std::int64_t b) { ::std::pair<::std::int64_t, ::std::int64_t> pa(1, 0), pb(0, 1); while (b != 0) { ::std::swap(a, b); ::std::swap(pa, pb); pb = ::std::make_pair(pb.first - pa.first * (b / a), pb.second - pa.second * (b / a)); b = b % a; } return pa; } // return x (mod lcm(m_i)) and lcm(m_i) that satisfies x ≡ b_i (mod m_i) (中国剰余定理) // if there isn't the answer, return (-1, -1) // O(N log M) ::std::pair<::std::int64_t, ::std::int64_t> CRT(const ::std::vector<::std::int64_t> &b, ::std::vector<::std::int64_t> &m) { ::std::int64_t ret = 0, M = 1; for (::std::size_t i = 0; i < b.size(); ++i) { ::std::int64_t p, q; ::std::int64_t d = gcd(M, m[i]); ::std::tie(p, q) = extgcd(M, m[i]); if ((b[i] - ret) % d != 0) return ::std::make_pair(-1, -1); ::std::int64_t tmp = (b[i] - ret) / d * p % (m[i] / d); ret += M * tmp; M *= m[i] / d; } return ::std::make_pair((ret + M) % M, M); } // Preprocessing for Garner algorithm // make the elements of m coprime // O(N^2) std::int64_t pre_garner(std::vector<std::int64_t>& b, std::vector<std::int64_t>& m, const std::int64_t MOD) { std::int64_t res = 1; for (int i = 0; i < b.size(); i++) { for (int j = i + 1; j < b.size(); j++) { std::int64_t g = gcd(m[i], m[j]); if ((b[i] - b[j]) % g != 0) return -1; m[i] /= g; m[j] /= g; std::int64_t gi = gcd(m[i], g), gj = g / gi; do { g = gcd(gi, gj); gi *= g; gj /= g; } while (g != 1); m[i] *= gi; m[j] *= gj; b[i] %= m[i]; b[j] %= m[j]; } res *= m[i]; } return res; } // return x mod MOD // It must be guranteed that all elements of m are coprime // O(N^2) std::int64_t garner(const std::vector<std::int64_t>& b, const std::vector<std::int64_t>& m, const std::int64_t MOD) { std::vector<std::int64_t> coeffs(b.size()+1, 1); std::vector<std::int64_t> constants(b.size()+1, 0); for (int i = 0; i < b.size(); ++i) { std::int64_t p, inv; std::tie(inv, p) = extgcd(coeffs[i], m[i]); std::int64_t t = (b[i] - constants[i]) * inv % m[i]; if (t < 0) t += m[i]; for (int j = i+1; j < b.size(); ++j) { constants[j] = (constants[j] + coeffs[j] * t) % m[j]; coeffs[j] = (coeffs[j] * m[i]) % m[j]; } constants.back() = (constants.back() + coeffs.back() * t) % MOD; coeffs.back() = (coeffs.back() * m[i]) % MOD; } return constants.back(); } int main(void) { using namespace std; vector<int64_t> x(3), y(3); int64_t l = 1; bool all0 = 1; for (int i = 0; i < 3; i++) { cin >> x[i] >> y[i]; if (x[i] != 0) all0 = 0; } l = pre_garner(x, y, numeric_limits<int64_t>::max()); if (all0 || l == -1) { cout << l << endl; } else { cout << garner(x, y, numeric_limits<int64_t>::max()) << endl; } }