結果

問題 No.3 ビットすごろく
ユーザー fumiphysfumiphys
提出日時 2019-08-15 23:32:17
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4 ms / 5,000 ms
コード長 4,952 bytes
コンパイル時間 1,781 ms
コンパイル使用メモリ 179,916 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-01 09:27:46
合計ジャッジ時間 2,797 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// includes
#include <bits/stdc++.h>
// macros
#define pb emplace_back
#define mk make_pair
#define pq priority_queue
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define vrep(v, i) for(int i = 0; i < (v).size(); i++)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define FI first
#define SE second
#define bit(n) (1LL<<(n))
#define INT(n) int n; cin >> n;
#define LL(n) ll n; cin >> n;
#define DOUBLE(n) double n; cin >> n;
using namespace std;
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size
    ())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr =
    itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr;
    auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto
    titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os <<
    *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os <<
    itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end();
    ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
// types
using ll = long long int;
using P = pair<int, int>;
using Pli = pair<ll, int>;
using Pil = pair<int, ll>;
using Pll = pair<ll, ll>;
using Pdd = pair<double, double>;
using cd = complex<double>;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1e9 + 7;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, -1, 0, 1};
// solve
template <typename T>
struct Graph {
int n;
vector<vector<pair<int, T> > > edge;
vector<T> dis;
Graph(int n): n(n) {
edge.resize(n);
dis.resize(n);
}
void dijkstra(int s){
dijkstra(s, 0);
}
T dijkstra(int s, int t){
// initialize
fill(dis.begin(), dis.end(), -1);
vector<bool> used(n, false);
dis[s] = 0;
// dijkstra
priority_queue<pair<T, int>, vector<pair<T, int> >, greater<pair<T, int> > > q;
q.push(make_pair(0, s));
while(!q.empty()){
pair<T, int> p = q.top(); q.pop();
int at = p.second;
T distance = p.first;
if(used[at])continue;
used[at] = true;
for(auto itr = edge[at].begin(); itr != edge[at].end(); ++itr){
int to = (*itr).first;
T cost = (*itr).second;
if(used[to])continue;
if(dis[to] == -1 || dis[to] > distance + cost){
q.push(make_pair(distance + cost, to));
dis[to] = distance + cost;
}
}
}
return dis[t];
}
void adde(int at, int to, T cost){
edge[at].push_back(make_pair(to, cost));
}
[[deprecated("This function takes O(|edge[at]|).")]]
void remove(int at, int to){
int index = -1;
for(int i = 0; i < edge[at].size(); i++){
if(edge[at][i].first == to){
index = i;
break;
}
}
edge[at].erase(edge[at].begin() + index);
}
};
using GraphI = Graph<int>;
using GraphL = Graph<ll>;
using GraphD = Graph<double>;
int main(int argc, char const* argv[])
{
ios_base::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(20);
INT(n);
GraphI graph(n);
rep(i, n){
int c = __builtin_popcount(i + 1);
if(i + c < n)graph.adde(i, i + c, 1);
if(i - c >= 0)graph.adde(i, i - c, 1);
}
int res = graph.dijkstra(0, n - 1);
cout << (res == -1? -1: res + 1) << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0