結果
| 問題 |
No.17 2つの地点に泊まりたい
|
| コンテスト | |
| ユーザー |
not_522
|
| 提出日時 | 2015-07-16 21:09:48 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 5,000 ms |
| コード長 | 4,145 bytes |
| コンパイル時間 | 1,610 ms |
| コンパイル使用メモリ | 171,724 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-10-15 01:24:41 |
| 合計ジャッジ時間 | 2,313 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 27 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
struct Edge {
typedef int CostType;
const static int cost = 1;
int from, to;
Edge(int from, int to) : from(from), to(to) {};
};
template<typename Cost> struct WeightedEdge : public Edge {
typedef Cost CostType;
Cost cost;
WeightedEdge(int from, int to, Cost cost = 0) : Edge(from, to), cost(cost) {}
};
template<typename Capacity> struct ResidualEdge : public Edge {
typedef Capacity CapacityType;
Capacity cap;
int rev;
ResidualEdge(int from, int to, Capacity cap) : Edge(from, to), cap(cap) {}
ResidualEdge reverse() const {return ResidualEdge(to, from, 0);}
};
template<typename Capacity, typename Cost> struct WeightedResidualEdge : public ResidualEdge<Capacity> {
Cost cost;
WeightedResidualEdge(int from, int to, Capacity cap, Cost cost) : ResidualEdge<Capacity>(from, to, cap), cost(cost) {}
WeightedResidualEdge reverse() const {return WeightedResidualEdge(this->to, this->from, 0, -cost);}
};
template<typename Edge> class Graph {
public:
typedef Edge EdgeType;
virtual int size() const = 0;
template<typename... Args> void addEdge(Args...) {}
template<typename... Args> void addUndirectedEdge(Args...) {}
virtual vector<Edge> getEdges() const = 0;
virtual vector<Edge> getEdges(int from) const = 0;
virtual vector<Edge> getEdges(int from, int to) const = 0;
virtual int getDegree(int v) const = 0;
};
template<typename Edge> class AdjacencyList : public Graph<Edge> {
protected:
vector<vector<Edge>> graph;
public:
AdjacencyList(int n) : graph(n) {}
int size() const {
return graph.size();
}
template<typename... Args> void addEdge(Args... args) {
Edge edge(args...);
graph[edge.from].emplace_back(edge);
}
template<typename... Args> void addUndirectedEdge(Args... args) {
Edge edge(args...);
addEdge(edge);
swap(edge.from, edge.to);
addEdge(edge);
}
vector<Edge> getEdges() const {
vector<Edge> res;
for (const auto& edges : graph) {
res.insert(res.end(), edges.begin(), edges.end());
}
return res;
}
vector<Edge> getEdges(int from) const {
return graph[from];
}
vector<Edge> getEdges(int from, int to) const {
vector<Edge> res;
for (const auto& edge : graph[from]) {
if (edge.to == to) res.emplace_back(edge);
}
return res;
}
int getDegree(int v) const {
return graph[v].size();
}
vector<Edge>& operator[](int v) {
return graph[v];
}
};
template<typename Graph> class WarshallFloyd {
private:
typedef typename Graph::EdgeType::CostType Cost;
const Graph& graph;
public:
const static Cost INF = numeric_limits<Cost>::max() / 2 - 1;
vector<vector<Cost>> dis;
WarshallFloyd(const Graph& graph) : graph(graph), dis(graph.size(), vector<Cost>(graph.size(), INF)) {
for (int i = 0; i < graph.size(); ++i) dis[i][i] = 0;
}
void solve() {
for (const auto& edge : graph.getEdges()) {
dis[edge.from][edge.to] = min(dis[edge.from][edge.to], edge.cost);
}
for (int k = 0; k < graph.size(); ++k) {
for (int i = 0; i < graph.size(); ++i) {
for (int j = 0; j < graph.size(); ++j) {
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}
}
};
template<typename Graph> inline WarshallFloyd<Graph> shortestPath(Graph& graph) {
WarshallFloyd<Graph> warshallFloyd(graph);
warshallFloyd.solve();
return warshallFloyd;
}
int main() {
typedef AdjacencyList<WeightedEdge<int>> Graph;
int n;
cin >> n;
vector<int> s(n);
for (int& i : s) cin >> i;
Graph graph(n);
int m;
cin >> m;
for (int i = 0; i < m; ++i) {
int a, b, c;
cin >> a >> b >> c;
graph.addUndirectedEdge(a, b, c);
}
auto dis = shortestPath(graph).dis;
int res = numeric_limits<int>::max();
const int INF = WarshallFloyd<Graph>::INF;
for (int i = 1; i < n - 1; ++i) {
for (int j = 1; j < n - 1; ++j) {
if (i == j) continue;
if (dis[0][i] == INF || dis[i][j] == INF || dis[j][n - 1] == INF) continue;
res = min(res, dis[0][i] + dis[i][j] + dis[j][n - 1] + s[i] + s[j]);
}
}
cout << res << endl;
}
not_522