結果

問題 No.864 四方演算
ユーザー otamay6otamay6
提出日時 2019-08-16 23:40:44
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 25 ms / 1,000 ms
コード長 22,293 bytes
コンパイル時間 2,170 ms
コンパイル使用メモリ 199,368 KB
実行使用メモリ 6,268 KB
最終ジャッジ日時 2024-09-25 10:48:35
合計ジャッジ時間 3,366 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 25 ms
6,248 KB
testcase_02 AC 16 ms
5,376 KB
testcase_03 AC 18 ms
5,376 KB
testcase_04 AC 21 ms
6,116 KB
testcase_05 AC 16 ms
5,376 KB
testcase_06 AC 21 ms
6,228 KB
testcase_07 AC 19 ms
5,376 KB
testcase_08 AC 17 ms
5,376 KB
testcase_09 AC 11 ms
5,376 KB
testcase_10 AC 9 ms
5,376 KB
testcase_11 AC 6 ms
5,376 KB
testcase_12 AC 17 ms
5,376 KB
testcase_13 AC 13 ms
5,376 KB
testcase_14 AC 6 ms
5,376 KB
testcase_15 AC 24 ms
6,196 KB
testcase_16 AC 17 ms
5,376 KB
testcase_17 AC 20 ms
5,984 KB
testcase_18 AC 17 ms
5,376 KB
testcase_19 AC 14 ms
5,376 KB
testcase_20 AC 22 ms
6,268 KB
testcase_21 AC 18 ms
5,376 KB
testcase_22 AC 15 ms
5,376 KB
testcase_23 AC 3 ms
5,376 KB
testcase_24 AC 15 ms
5,376 KB
testcase_25 AC 9 ms
5,376 KB
testcase_26 AC 16 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 2 ms
5,376 KB
testcase_29 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define REP(i,n) for(int i=0,i##_len=(n);i<i##_len;++i)
#define RREP(i,n) for(int i=int(n)-1;i>=0;--i)
#define rep(i,a,b) for(int i=int(a);i<int(b);++i)
#define rrep(i,a,b) for(int i=int(a)-1;i>=int(b);--i)
#define All(x) (x).begin(),(x).end()
#define rAll(x) (x).rbegin(),(x).rend()
#define ITR(i,x) for(auto i=(x).begin();i!=(x).end();++i)
using namespace std;
using Graph = vector<vector<int>>;
typedef long long ll;
typedef pair<ll, ll> P;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vl;
typedef vector<vl> vvl;
constexpr ll mod = 1e9+7;
constexpr double eps = 1e-9;
P bisearch(ll l,ll r,function<bool(ll)> f){
while((l+1)<r){
ll m=(l+r)/2;
if(f(m)) r=m;
else l=m;
}
return P(l,r);
}
ll SQRT(ll n){if(n==1) return 1;return bisearch(0,n,[n](ll x){return x>n/x;}).first;}
ll roundup(ll n,ll div){
if(n>0) return (n-1)/div+1;
else return n/div;
}
bool square(ll a){ll n=SQRT(a);return a==n*n;}
ll npow(ll x, ll n){
ll ans = 1;
while(n != 0){
if(n&1) ans = ans*x;
x = x*x;
n = n >> 1;
}
return ans;
}
ll mpow(ll x, ll n){ //x^n(mod) ←pow(x,n)mod 2
ll ans = 1;
while(n != 0){
if(n&1) ans = ans*x % mod;
x = x*x % mod;
n = n >> 1;
}
return ans;
}
ll inv_mod(ll a){return mpow(a,mod-2);}
int digitsum(ll N,int a){
if(N==0) return 0;
int ret=0;
ret+=digitsum(N/a,a)+N%a;
return ret;
}
ll gcd(ll x,ll y){return y ? gcd(y,x%y) : x;};//xy
ll lcm(ll x,ll y){return x/gcd(x,y)*y;}//xy
void YN(bool flg){std::cout<<(flg?"YES":"NO")<<endl;}
void Yn(bool flg){std::cout<<(flg?"Yes":"No")<<endl;}
void yn(bool flg){std::cout<<(flg?"yes":"no")<<endl;}
P splitint(string n,int a){
int Len=n.length();
if(a<0||Len<a) return {-1,-1};
string left,right;
if(a!=0) left=n.substr(0,a);
if(a!=Len) right=n.substr(a);
return P(stoll(left),stoll(right));
}
ll manhattan(const P &a,const P &b){return llabs(a.first-b.first)+llabs(a.second-b.second);}
bool kaibun(string s){//O(|S|)
string sdash=s;
reverse(All(s));
return s==sdash;
}
class Ruiseki{
private:
vector<ll> LEFT,RIGHT;
function<ll(ll,ll)> F;
int N;
public:
Ruiseki(ll INI,const vector<ll> &a,function<ll(ll,ll)> f){
N=a.size();F=f;
LEFT.resize(N+1);RIGHT.resize(N+1);
LEFT[0]=RIGHT[0]=INI;
REP(i,N){
LEFT[i+1]=F(LEFT[i],a[i]);
RIGHT[i+1]=F(RIGHT[i],a[N-i-1]);
}
}
ll out(int l,int r){//[l,r)
return F(LEFT[l],RIGHT[N-r]);
}
};
class mint {
private:
ll _num,_mod;
mint set(ll num){
_num = num ;
if(_num>=0) _num%=_mod;
else _num+=(1-(_num+1)/_mod)*_mod;
return *this;
}
ll imod(ll n){return mpow(n , _mod-2);}
public:
mint(){ _num = 0;_mod=mod; }
mint(ll num){ _mod = mod; _num = (num+(1LL<<25)*mod) % mod; }
mint(ll num,ll M){ _mod=M;_num=(num+(1LL<<25)*mod)%_mod; }
mint(const mint &cp){_num=cp._num;_mod=cp._mod;}
mint operator= (const ll x){ return set(x); }
mint operator+ (const ll x){ return mint(_num + (x % _mod) , _mod); }
mint operator- (const ll x){ return mint(_num - (x % _mod), _mod); }
mint operator* (const ll x){ return mint(_num * (x % _mod) , _mod); }
mint operator/ (ll x){ return mint(_num * imod(x) , _mod);}
mint operator+=(const ll x){ return set(_num + (x % _mod)); }
mint operator-=(const ll x){ return set(_num - (x % _mod)); }
mint operator*=(const ll x){ return set(_num * (x % _mod)); }
mint operator/=(ll x){ return set(_num * imod(x));}
mint operator+ (const mint &x){ return mint(_num + x._num , _mod); }
mint operator- (const mint &x){ return mint(_num - x._num , _mod);}
mint operator* (const mint &x){ return mint(_num * x._num , _mod); }
mint operator/ (mint x){ return mint(_num * imod(x._num) , _mod);}
mint operator+=(const mint &x){ return set(_num + x._num); }
mint operator-=(const mint &x){ return set(_num - x._num); }
mint operator*=(const mint &x){ return set(_num * x._num); }
mint operator/=(mint x){ return set(_num * imod(x._num));}
bool operator<(const mint &x){return _num<x._num;}
friend mint operator+(ll x,const mint &m){return mint(m._num + (x % m._mod) , m._mod);}
friend mint operator-(ll x,const mint &m){return mint(m._num - (x % m._mod) , m._mod);}
friend mint operator*(ll x,const mint &m){return mint(m._num * (x % m._mod) , m._mod);}
friend mint operator/(ll x,mint m){return mint(m.imod(m._num) * x , m._mod);}
explicit operator ll() { return _num; }
explicit operator int() { return (int)_num; }
friend ostream& operator<<(ostream &os, const mint &x){ os << x._num; return os; }
friend istream& operator>>(istream &is, mint &x){ll val; is>>val; x.set(val); return is;}
};
template<typename T> class MAT{
private:
int row,col;
vector<vector<T>> _A;
MAT set(vector<vector<T>> A){_A = A ; return *this;}
public:
MAT(){ }
MAT(int n,int m){
if(n<1 || m<0){cout << "err Matrix::Matrix" <<endl;exit(1);}
row = n;
col = m?m:n;//m=0
REP(i,row){
vector<T> a(col);
_A.push_back(a);
REP(j,col) _A[i][j]=0;
}
//
if(m==0) REP(i,n) _A[i][i]=1.0;
}
MAT(const MAT &cp){_A=cp._A;row=cp.row;col=cp.col;}
T* operator[] (int i){return _A[i].data();}
MAT operator= (vector<vector<T>> x) {return set(x);}
MAT operator+ (MAT x) {
if(row!=x.row || col!=x.col){
cout << "err Matrix::operator+" <<endl;
cout << " not equal matrix size" <<endl;
exit(0);
}
MAT r(row, col);
REP(i,row) REP(j,col) r[i][j]=_A[i][j]+x[i][j];
return r;
}
MAT operator- (MAT x) {
if(row!=x.row || col!=x.col){
cout << "err Matrix::operator-" <<endl;
cout << " not equal matrix size" <<endl;
exit(0);
}
MAT r(row, col);
REP(i,row) REP(j,col) r[i][j]=_A[i][j]-x[i][j];
return r;
}
MAT operator* (MAT x) {
if(col!=x.row){
cout << "err Matrix::operator*" <<endl;
cout << " not equal matrix size" <<endl;
exit(0);
}
MAT r(row, x.col);
REP(i,row) REP(j,x.col) REP(k,col) r[i][j]+=_A[i][k]*x[k][j];
return r;
}
MAT operator/ (T a){
MAT r(row,col);
REP(i,row) REP(j,col) r[i][j]=_A[i][j]/a;
return r;
}
MAT operator^ (ll n){
if(row!=col){
cout << "err Matrix::operator^" <<endl;
cout << " not equal matrix size" <<endl;
exit(0);
}
MAT r(row,0),A=*this;
while(n){
if(n&1) r *= A;
A*=A;
n>>=1;
}
return r;
}
MAT operator+= (MAT x) {
if(row!=x.row || col!=x.col){
cout << "err Matrix::operator+=" <<endl;
cout << " not equal matrix size" <<endl;
exit(0);
}
MAT r(row, col);
REP(i,row) REP(j,col) r[i][j]=_A[i][j]+x[i][j];
return set(r._A);
}
MAT operator-= (MAT x) {
if(row!=x.row || col!=x.col){
cout << "err Matrix::operator-=" <<endl;
cout << " not equal matrix size" <<endl;
exit(0);
}
MAT r(row, col);
REP(i,row) REP(j,col) r[i][j]=_A[i][j]-x[i][j];
return set(r._A);
}
MAT operator*= (MAT x) {
if(col!=x.row){
cout << "err Matrix::operator*" <<endl;
cout << " not equal matrix size" <<endl;
exit(0);
}
MAT r(row, x.col);
REP(i,row) REP(j,x.col) REP(k,col) r[i][j]+=_A[i][k]*x[k][j];
return set(r._A);
}
MAT operator/=(T a){
MAT r(row,col);
REP(i,row) REP(j,col) r[i][j]=_A[i][j]/a;
return r;
}
friend MAT operator* (T n,MAT x){
MAT r(x.row,x.col);
REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j];
return r;
}
friend MAT operator* (MAT x,T n){
MAT r(x.row,x.col);
REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j];
return r;
}
explicit operator vector<vector<T>>(){return _A;}
friend ostream &operator<<(ostream &os,const MAT &x){ REP(i,x.row) REP(j,x.col) os<<x._A[i][j]<<" \n"[j==x.col-1]; return os;}
friend istream &operator>>(istream &is,MAT &x){REP(i,x.row) REP(j,x.col) is>>x._A[i][j];return is;}
int size_row(){return row;}
int size_col(){return col;}
MAT transpose(){
MAT r(col,row);
REP(i,col) REP(j,row) r[i][j]=_A[j][i];
return r;
}
MAT inverse(){
T buf;
MAT<T> inv_a(row,0);
vector<vector<T>> a=_A;
//
REP(i,row){
buf=1/a[i][i];
REP(j,row){
a[i][j]*=buf;
inv_a[i][j]*=buf;
}
REP(j,row){
if(i!=j){
buf=a[j][i];
REP(k,row){
a[j][k]-=a[i][k]*buf;
inv_a[j][k]-=inv_a[i][k]*buf;
}
}
}
}
return inv_a;
}
// O( n^3 ).
int rank() {
vector<vector<T>> A=_A;
const int n = row, m = col;
int r = 0;
for(int i = 0; r < n && i < m; ++i) {
int pivot = r;
for(int j = r+1; j < n; ++j) if(abs(A[j][i]) > abs(A[pivot][i])) pivot = j;
swap(A[pivot], A[r]);
if(abs(A[r][i]) < eps) continue;
for (int k = m-1; k >= i; --k) A[r][k] /= A[r][i];
rep(j,r+1,n) rep(k,i,m) A[j][k] -= A[r][k] * A[j][i];
++r;
}
return r;
}
};
class UnionFind{//UnionFind
private:
vector<int> Parent;
vector<ll> diff_weight;
public:
UnionFind(int N){
Parent.resize(N,-1);
diff_weight.resize(N,0LL);
}
int root(int A){
if(Parent[A]<0) return A;
else{
int r = root(Parent[A]);
diff_weight[A] += diff_weight[Parent[A]]; //
return Parent[A]=r;
}
}
bool issame(int A,int B){
return root(A)==root(B);
}
ll weight(int x) {
root(x); //
return diff_weight[x];
}
ll diff(int x, int y) {
return weight(y) - weight(x);
}
int size(int A){
return -Parent[root(A)];
}
bool connect(int A,int B){
A=root(A); B=root(B);
if(A==B) return false;
if(size(A)<size(B)) swap(A,B);
Parent[A]+=Parent[B];
Parent[B]=A;
return true;
}
bool merge(int A, int B, ll w) {
// x y root
w += weight(A); w -= weight(B);
A=root(A); B=root(B);
if(A==B) return false;
if(size(A)<size(B)) swap(A,B),w=-w;
Parent[A]+=Parent[B];
Parent[B]=A;
// x y x y diff_weight[y]
diff_weight[B] = w;
return true;
}
};
class Factorial{//
private:
vector<ll> fac;
vector<ll> ifac;
public:
Factorial(ll N){
fac.push_back(1);
REP(i,N) fac.push_back(fac[i]*(i+1)%mod);
ifac.resize(N+1);
ifac[N]=inv_mod(fac[N]);
REP(i,N) ifac[N-1-i]=(ifac[N-i]*(N-i))%mod;
}
ll fact(ll a){return fac[a];}
ll ifact(ll a){return ifac[a];}
ll cmb(ll a,ll b){
if(a==0&&b==0) return 1;
if(a<b||a<0||b<0) return 0;
ll tmp =ifact(a-b)*ifact(b)%mod;
return tmp*fac[a]%mod;
}
ll per(ll a,ll b){
if(a==0&&b==0) return 1;
if(a<b||a<0||b<0) return 0;
return fac[a]*ifac[a-b]%mod;
}
};
class SOSU{
private:
vector<ll> Prime_Number;
public:
SOSU(ll N){
vector<bool> isp(N+1,true);
isp[0]=isp[1]=false;
rep(i,2,N+1){
if(isp[i]){
Prime_Number.push_back(i);
for(int j=2*i;j<=N;j+=i) isp[j]=false;
}
}
}
ll operator[](int i){return Prime_Number[i];}
int size(){return Prime_Number.size();}
ll back(){return Prime_Number.back();}
bool isPrime(int q){return binary_search(All(Prime_Number),q);}
};
class Divisor{//(,)pfac
private:
set<ll> factorize;
vector<ll> F;
vector<P> pfactorize;
public:
Divisor(ll N){
for(ll i = 1; i * i <= N; i++) {
if(N % i == 0) {
F.push_back(i);
if(i * i != N) F.push_back(N / i);
}
}
sort(begin(F), end(F));
SOSU p(SQRT(N)+1);
REP(i,p.size()){
pfactorize.push_back(P(p[i],0));
while(N%p[i]==0){
N/=p[i];
pfactorize.back().second++;
}
if(pfactorize.size()==0) pfactorize.pop_back();
}
if(N>1) pfactorize.push_back(P(N,1));
}
void init(int i,ll res){
if(i==pfactorize.size()){
factorize.insert(res);
return;
}
REP(j,pfactorize[i].second+1){
init(i+1,res*npow(pfactorize[i].first,j));
}
return;
}
int size(){return F.size();}
vector<P> pfac(){return pfactorize;}
ll operator[](int k){return F[k];}
};
struct Solutions{
ll napsack(int kinds,int MAX_W,const vl &weight,const vl &cost){
vector<vector<ll>> dp(kinds+1,vector<ll>(MAX_W+1,0));
REP(i,kinds) REP(j,MAX_W+1){
if(j<weight[i]) dp[i+1][j]=dp[i][j];
else dp[i+1][j]=max(dp[i][j],dp[i][j-weight[i]]+cost[i]);
}
return dp[kinds][MAX_W];
}
ll cost_based_napsack(int kinds,int MAX_W,const vl &weight,const vl &cost){
int MAX_V=0;
REP(i,kinds) MAX_V=max(MAX_V,(int)cost[i]);
vvl dp(kinds+1,vl(kinds*MAX_V+1,1LL<<58));
dp[0][0] = 0;
REP(i,kinds) REP(j,kinds*MAX_V+1){
if(j<cost[i]) dp[i+1][j]=dp[i][j];
else dp[i+1][j] = min(dp[i][j],dp[i][j-cost[i]]+weight[i]);
}
int res=0;
REP(i,kinds*MAX_V+1) if(dp[kinds][i]<=MAX_W) res=i;
return res;
}
ll unlimited_napsack(int kinds,int MAX_W,const vl &weight,const vl &cost){
vector<vector<ll>> dp(kinds+1,vector<ll>(MAX_W+1,0));
REP(i,kinds) REP(j,MAX_W+1){
if(j<weight[i]) dp[i+1][j]=dp[i][j];
else dp[i+1][j]=max(dp[i][j],dp[i+1][j-weight[i]]+cost[i]);
}
return dp[kinds][MAX_W];
}
ll huge_napsack(int kinds,ll MAX_W,const vl &weight,const vl &cost){
int n2=kinds/2;
vector<P> ps(1<<(kinds/2));
REP(i,1<<n2){
ll sw=0,sv=0;
REP(j,n2){
if(i>>j&1){
sw += weight[j];
sv += cost[j];
}
}
ps[i] = P(sw,sv);
}
sort(ps.begin(),ps.begin() + (1<<n2) );
int m=1;
rep(i,1,1<<n2){
if(ps[m-1].second<ps[i].second) ps[m++] = ps[i];
}
ll res=0;
REP(i,1<<(kinds-n2)){
ll sw=0,sv=0;
REP(j,kinds-n2){
if((i>>j)&1){
sw += weight[n2+j];
sv += cost[n2+j];
}
}
if(sw<=MAX_W){
ll tv = (lower_bound(ps.begin(),ps.begin()+m,P(MAX_W-sw,LLONG_MAX))-1)->second;
res = max(res,sv+tv);
}
}
return res;
}
ll choose_MonN(int N,int M,const vl &cost){
vvl dp(N+1,vl(M+1,-1LL<<58));
REP(i,N+1) dp[i][0]=0;
REP(i,N) REP(j,M){
if(j>i) break;
dp[i+1][j+1]=max(dp[i][j+1],dp[i][j]+cost[i]);
}
return dp[N][M];
}
ll Partition_Func(int n,int k){
vector<vector<ll>> dp(k+1,vector<ll> (n+1,0));
dp[0][0]=1;
rep(i,1,k+1) REP(j,n+1){
if(j-i>=0) dp[i][j]=(dp[i][j-i]+dp[i-1][j]);
else dp[i][j]=dp[i-1][j];
}
return dp[k][n];
}
int LCS(string s,string t){
int n=s.length(),m=s.length();
vector<vector<int>> dp(n+1,vector<int>(m+1));
REP(i,n) REP(j,m){
if (s[i] == t[j]) dp[i+1][j+1] = dp[i][j] + 1;
else dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]);
}
return dp[n][m];
}
int LIS(const vector<ll> a){
int n=a.size();
ll INF=1<<28;
vector<ll> dp(n+1,INF);
REP(i,n) *lower_bound(All(dp),a[i])=a[i];
int k=lower_bound(All(dp),INF)-dp.begin();
return k;
}
int max_flow(int s,int t,const vector<vector<P>> &g){
struct edge_{int to,cap, rev;};
vector<bool> used(g.size(),false);
vector<vector<edge_>> G(g.size());
REP(i,g.size()) REP(j,g[i].size()){
int from = i, to = g[i][j].second;
int cap = g[i][j].first;
G[from].push_back((edge_){to,cap,(int)G[to].size()});
G[to].push_back((edge_){from,0,(int)G[from].size()-1});
}
auto dfs = [&](auto&& f,int v,int t,int fl)->int{
if(v==t) return fl;
used[v] = true;
REP(i,G[v].size()){
edge_ &e = G[v][i];
if(!used[e.to] && e.cap>0){
int d = f(f, e.to,t,min(fl,e.cap));
if(d>0){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
};
int flow=0;
while(1){
used.assign(used.size(),false);
int f = dfs(dfs,s,t,INT_MAX);
if(f==0) return flow;
flow += f;
}
}
int bipartite_matching_calculate(const Graph &g){
int V = g.size();
vi match(V,-1);
vector<bool> used(V,false);
auto dfs = [&](auto&& f,int v)->bool{
used[v]=true;
REP(i,g[v].size()){
int u = g[v][i], w = match[u];
if(w<0 || !used[w] && f(f,w)){
match[v]=u;
match[u]=v;
return true;
}
}
return false;
};
int res=0;
REP(v,V){
if(match[v] < 0){
used.assign(V,false);
if(dfs(dfs,v)) res++;
}
}
return res;
}
int bipartite_matching(int l,int r,function<bool(int,int)> F){
int V = l+r;
Graph G(V);
REP(i,l) REP(j,r) if(F(i,j)){
G[i].push_back(l+j);
G[l+j].push_back(i);
}
return bipartite_matching_calculate(G);
}
};
struct edge{
int from;int to;ll cost;
void push(int a,int b,int c){
from=a;to=b;cost=c;
}
bool operator<(const edge& y) const{
if(cost!=y.cost) return cost<y.cost;
else if(to!=y.to) return to<y.to;
else return from<y.from;}
bool operator>(const edge& y) const{
if(cost!=y.cost) return cost>y.cost;
else if(to!=y.to) return to>y.to;
else return from>y.from;}
bool operator==(const edge& y) const{return *this==y;}
};
class lca {
public:
const int n = 0;
const int log2_n = 0;
std::vector<std::vector<int>> parent;
std::vector<int> depth;
lca() {}
lca(const Graph &g, int root)
: n(g.size()), log2_n(log2(n) + 1), parent(log2_n, std::vector<int>(n)), depth(n) {
dfs(g, root, -1, 0);
for (int k = 0; k + 1 < log2_n; k++) {
for (int v = 0; v < (int)g.size(); v++) {
if (parent[k][v] < 0)
parent[k + 1][v] = -1;
else
parent[k + 1][v] = parent[k][parent[k][v]];
}
}
}
void dfs(const Graph &g, int v, int p, int d) {
parent[0][v] = p;
depth[v] = d;
REP(j,g[v].size()) {
if (g[v][j] != p) dfs(g, g[v][j], v, d + 1);
}
}
int get(int u, int v) {
if (depth[u] > depth[v]) std::swap(u, v);
for (int k = 0; k < log2_n; k++) {
if ((depth[v] - depth[u]) >> k & 1) {
v = parent[k][v];
}
}
if (u == v) return u;
for (int k = log2_n - 1; k >= 0; k--) {
if (parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
};
template <typename T,typename E> //SegmentTree(() int n_,() F f,() G g,() T d1)
struct SegmentTree{
typedef function<T(T,T)> F;
typedef function<T(T,E)> G;
int n;
F f;
G g;
T d1;
E d0;
vector<T> dat;
SegmentTree(){};
SegmentTree(int n_,F f,G g,T d1,
vector<T> v=vector<T>()):
f(f),g(g),d1(d1){
init(n_);
if(n_==(int)v.size()) build(n_,v);
}
void init(int n_){
n=1;
while(n<n_) n*=2;
dat.clear();
dat.resize(2*n-1,d1);
}
void build(int n_, vector<T> v){
for(int i=0;i<n_;i++) dat[i+n-1]=v[i];
for(int i=n-2;i>=0;i--)
dat[i]=f(dat[i*2+1],dat[i*2+2]);
}
void update(int k,E a){
k+=n-1;
dat[k]=g(dat[k],a);
while(k>0){
k=(k-1)/2;
dat[k]=f(dat[k*2+1],dat[k*2+2]);
}
}
inline T query(int a,int b){
T vl=d1,vr=d1;
for(int l=a+n,r=b+n;l<r;l>>=1,r>>=1) {
if(l&1) vl=f(vl,dat[(l++)-1]);
if(r&1) vr=f(dat[(--r)-1],vr);
}
return f(vl,vr);
}
};
int main(){
ll N,K;cin>>N>>K;
Divisor d(K);
ll ans=0;
ll n=d.size();
REP(i,n){
ll LMAX=min(d[i]-1,N),LMIN=max(1LL,d[i]-N);
ll RMAX=min(d[n-i-1]-1,N),RMIN=max(1LL,d[n-i-1]-N);
ans+=max((LMAX-LMIN+1)*(RMAX-RMIN+1),0LL);
//cout<<d[i]<<" "<<d[n-i-1]<<" "<<ans<<endl;
}
cout<<ans<<endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0