結果

問題 No.868 ハイパー部分和問題
ユーザー LayCurseLayCurse
提出日時 2019-08-17 01:13:36
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 569 ms / 7,000 ms
コード長 8,376 bytes
コンパイル時間 2,429 ms
コンパイル使用メモリ 197,432 KB
最終ジャッジ日時 2025-01-07 13:11:16
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 38
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#define MD 1000000007
struct Rand{
unsigned w, x, y, z;
Rand(void){
x=123456789;
y=362436069;
z=521288629;
w=(unsigned)time(NULL);
}
Rand(unsigned seed){
x=123456789;
y=362436069;
z=521288629;
w=seed;
}
inline unsigned get(void){
unsigned t;
t = (x^(x<<11));
x=y;
y=z;
z=w;
w = (w^(w>>19))^(t^(t>>8));
return w;
}
inline double getUni(void){
return get()/4294967296.0;
}
inline int get(int a){
return (int)(a*getUni());
}
inline int get(int a, int b){
return a+(int)((b-a+1)*getUni());
}
inline long long get(long long a){
return(long long)(a*getUni());
}
inline long long get(long long a, long long b){
return a+(long long)((b-a+1)*getUni());
}
inline double get(double a, double b){
return a+(b-a)*getUni();
}
inline int getExp(int a){
return(int)(exp(getUni()*log(a+1.0))-1.0);
}
inline int getExp(int a, int b){
return a+(int)(exp(getUni()*log((b-a+1)+1.0))-1.0);
}
}
;
struct mint{
static unsigned R, RR, Rinv, W, md, mdninv;
unsigned val;
mint(){
}
mint(int a){
val = mulR(a);
}
mint(unsigned a){
val = mulR(a);
}
mint(long long a){
val = mulR(a);
}
mint(unsigned long long a){
val = mulR(a);
}
int get_inv(long long a, int md){
long long e, s=md, t=a, u=1, v=0;
while(s){
e=t/s;
t-=e*s;
u-=e*v;
swap(t,s);
swap(u,v);
}
if(u<0){
u+=md;
}
return u;
}
void setmod(unsigned m){
int i;
unsigned t;
W = 32;
md = m;
R = (1ULL << W) % md;
RR = (unsigned long long)R*R % md;
switch(m){
case 104857601:
Rinv = 2560000;
mdninv = 104857599;
break;
case 998244353:
Rinv = 232013824;
mdninv = 998244351;
break;
case 1000000007:
Rinv = 518424770;
mdninv = 2226617417U;
break;
case 1000000009:
Rinv = 171601999;
mdninv = 737024967;
break;
case 1004535809:
Rinv = 234947584;
mdninv = 1004535807;
break;
case 1007681537:
Rinv = 236421376;
mdninv = 1007681535;
break;
case 1012924417:
Rinv = 238887936;
mdninv = 1012924415;
break;
case 1045430273:
Rinv = 254466304;
mdninv = 1045430271;
break;
case 1051721729:
Rinv = 257538304;
mdninv = 1051721727;
break;
default:
Rinv = get_inv(R, md);
mdninv = 0;
t = 0;
for(i=0;i<((int)W);i++){
if(t%2==0){
t+=md;
mdninv |= (1U<<i);
}
t /= 2;
}
}
}
unsigned mulR(unsigned a){
return (unsigned long long)a*R%md;
}
unsigned mulR(int a){
if(a < 0){
a = a%md+md;
}
return mulR((unsigned)a);
}
unsigned mulR(unsigned long long a){
return mulR((unsigned)(a%md));
}
unsigned mulR(long long a){
a %= md;
if(a < 0){
a += md;
}
return mulR((unsigned)a);
}
unsigned reduce(unsigned T){
unsigned m=T * mdninv, t=(unsigned)((T + (unsigned long long)m*md) >> W);
if(t >= md){
t -= md;
}
return t;
}
unsigned reduce(unsigned long long T){
unsigned m=(unsigned)T * mdninv, t=(unsigned)((T + (unsigned long long)m*md) >> W);
if(t >= md){
t -= md;
}
return t;
}
unsigned get(){
return reduce(val);
}
mint &operator+=(mint a){
val += a.val;
if(val >= md){
val -= md;
}
return *this;
}
mint &operator-=(mint a){
if(val < a.val){
val = val + md - a.val;
}
else{
val -= a.val;
}
return *this;
}
mint &operator*=(mint a){
val = reduce((unsigned long long)val*a.val);
return *this;
}
mint &operator/=(mint a){
return *this *= a.inverse();
}
mint operator+(mint a){
return mint(*this)+=a;
}
mint operator-(mint a){
return mint(*this)-=a;
}
mint operator*(mint a){
return mint(*this)*=a;
}
mint operator/(mint a){
return mint(*this)/=a;
}
mint operator+(int a){
return mint(*this)+=mint(a);
}
mint operator-(int a){
return mint(*this)-=mint(a);
}
mint operator*(int a){
return mint(*this)*=mint(a);
}
mint operator/(int a){
return mint(*this)/=mint(a);
}
mint operator+(long long a){
return mint(*this)+=mint(a);
}
mint operator-(long long a){
return mint(*this)-=mint(a);
}
mint operator*(long long a){
return mint(*this)*=mint(a);
}
mint operator/(long long a){
return mint(*this)/=mint(a);
}
mint operator-(void){
mint res;
if(val){
res.val=md-val;
}
else{
res.val=0;
}
return res;
}
operator bool(void){
return val!=0;
}
operator int(void){
return get();
}
operator long long(void){
return get();
}
mint inverse(){
int a=val, b=md, t, u=1, v=0;
mint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += md;
}
res.val = (unsigned long long)u*RR % md;
return res;
}
mint pw(unsigned long long b){
mint a(*this), res;
res.val = R;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
bool operator==(int a){
return mulR(a)==val;
}
bool operator!=(int a){
return mulR(a)!=val;
}
}
;
mint operator+(int a, mint b){
return mint(a)+=b;
}
mint operator-(int a, mint b){
return mint(a)-=b;
}
mint operator*(int a, mint b){
return mint(a)*=b;
}
mint operator/(int a, mint b){
return mint(a)/=b;
}
mint operator+(long long a, mint b){
return mint(a)+=b;
}
mint operator-(long long a, mint b){
return mint(a)-=b;
}
mint operator*(long long a, mint b){
return mint(a)*=b;
}
mint operator/(long long a, mint b){
return mint(a)/=b;
}
inline void rd(int &x){
int k, m=0;
x=0;
for(;;){
k = getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void wt_L(char a){
putchar_unlocked(a);
}
inline void wt_L(int x){
char f[10];
int m=0, s=0;
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
putchar_unlocked('-');
}
while(s--){
putchar_unlocked(f[s]+'0');
}
}
template<class T> inline int isPrime_L(T n){
T i;
if(n<=1){
return 0;
}
if(n<=3){
return 1;
}
if(n%2==0){
return 0;
}
for(i=3;i*i<=n;i+=2){
if(n%i==0){
return 0;
}
}
return 1;
}
unsigned mint::R, mint::RR, mint::Rinv, mint::W, mint::md, mint::mdninv;
int N;
int K;
int A[15000];
int Q;
int X;
int V;
mint dp[15001];
void go(int m){
int i;
if(m==0){
return;
}
for(i=K;i>=m;i--){
dp[i] += dp[i-m];
}
}
void back(int m){
int i;
if(m==0){
return;
}
for(i=(m);i<(K+1);i++){
dp[i] -= dp[i-m];
}
}
int main(){
Rand rnd;
int KL2GvlyY, i, j, k, m;
{
mint x;
x.setmod(MD);
}
rd(N);
rd(K);
{
int Lj4PdHRW;
for(Lj4PdHRW=0;Lj4PdHRW<(N);Lj4PdHRW++){
rd(A[Lj4PdHRW]);
}
}
rd(Q);
m = rnd.get(900000000, 1010000000);
while(!isPrime_L(m)){
m++;
}
dp[0].setmod(m);
dp[0] = 1;
for(i=0;i<(N);i++){
go(A[i]);
}
for(KL2GvlyY=0;KL2GvlyY<(Q);KL2GvlyY++){
rd(X);X += (-1);
rd(V);
back(A[X]);
A[X] = V;
go(A[X]);
if((int)dp[K]){
wt_L(1);
wt_L('\n');
}
else{
wt_L(0);
wt_L('\n');
}
}
return 0;
}
// cLay varsion 20190810-2
// --- original code ---
// int N, K, A[15000], Q, X, V;
//
// mint dp[15001];
//
// void go(int m){
// int i;
// if(m==0) return;
// for(i=K;i>=m;i--) dp[i] += dp[i-m];
// }
//
// void back(int m){
// int i;
// if(m==0) return;
// rep(i,m,K+1) dp[i] -= dp[i-m];
// }
//
// {
// int i, j, k, m;
// Rand rnd;
//
// rd(N,K,A(N),Q);
//
// m = rnd.get(9d8, 1.01d9);
// while(!isPrime(m)) m++;
// dp[0].setmod(m);
//
// dp[0] = 1;
// rep(i,N) go(A[i]);
//
// rep(Q){
// rd(X--, V);
// back(A[X]);
// A[X] = V;
// go(A[X]);
// if((int)dp[K]) wt(1); else wt(0);
// }
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0