結果
問題 | No.718 行列のできるフィボナッチ数列道場 (1) |
ユーザー | firiexp |
提出日時 | 2019-08-19 20:49:51 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 3,557 bytes |
コンパイル時間 | 646 ms |
コンパイル使用メモリ | 86,472 KB |
最終ジャッジ日時 | 2024-11-14 21:35:00 |
合計ジャッジ時間 | 1,043 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of 'struct SquareMatrix<modint<1000000007>, 2>': main.cpp:112:9: required from here main.cpp:52:9: error: 'SquareMatrix<T, SIZE>::A' has incomplete type 52 | mat A; | ^ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_map.h:63, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/map:61, from main.cpp:5: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/tuple:1595:45: note: declaration of 'using mat = struct std::array<std::array<modint<1000000007>, 2>, 2>' {aka 'struct std::array<std::array<modint<1000000007>, 2>, 2>'} 1595 | template<typename _Tp, size_t _Nm> struct array; | ^~~~~ main.cpp: In function 'int main()': main.cpp:112:16: error: no match for 'operator[]' (operand types are 'SquareMatrix<modint<1000000007>, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int') 112 | mat x; x[0][0] = mint(1), x[1][0] = mint(1), x[0][1] = mint(1); | ^ main.cpp:112:35: error: no match for 'operator[]' (operand types are 'SquareMatrix<modint<1000000007>, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int') 112 | mat x; x[0][0] = mint(1), x[1][0] = mint(1), x[0][1] = mint(1); | ^ main.cpp:112:54: error: no match for 'operator[]' (operand types are 'SquareMatrix<modint<1000000007>, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int') 112 | mat x; x[0][0] = mint(1), x[1][0] = mint(1), x[0][1] = mint(1); | ^ main.cpp:114:18: error: no match for 'operator[]' (operand types are 'SquareMatrix<modint<1000000007>, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int') 114 | cout << (x[0][0] * x[1][0]).val << "\n"; | ^ main.cpp:114:28: error: no match for 'operator[]' (operand types are
ソースコード
#include <limits> #include <iostream> #include <algorithm> #include <iomanip> #include <map> #include <set> #include <queue> #include <stack> #include <numeric> #include <bitset> #include <cmath> static const int MOD = 1000000007; using ll = long long; using u32 = uint32_t; using namespace std; template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208; template <ll M = MOD> struct modint { public: ll val; explicit modint(const ll x = 0) : val(x) {} modint operator+(const modint a) const { return modint(*this) += a; } modint operator-(const modint a) const { return modint(*this) -= a; } modint operator*(const modint a) const { return modint(*this) *= a; } modint operator/(const modint a) const { return modint(*this) /= a; } modint operator-() const { return modint(M-val); } modint inv(){ ll u = 1, v = 0, s = 0, t = 1, m = M, x = val; while (x) {ll q = m/x; swap(s -= q*u, u); swap(t -= q*v, v); swap(m -= q*x, x); } if(s < 0) s += M; return modint(s); } modint pow(ll n){ ll u = 1, xx = val; while (n > 0){ if (n&1) u = u * xx % M; xx = xx * xx % M; n >>= 1; } return u; } modint &operator+=(const modint a){ val += a.val; if(val >= M) val -= M; return *this; } modint &operator-=(const modint a){ val -= a.val; if(val < 0) val += M; return *this; } modint &operator*=(const modint a){ val = val * a.val % M; return *this; } modint &operator/=(const modint a){ val = (val*a.inv()) %M; return *this;} }; using mint = modint<MOD>; template<class T, size_t SIZE> struct SquareMatrix { using ar = array<T, SIZE>; using mat = array<ar, SIZE>; mat A; SquareMatrix() = default; static SquareMatrix I(T e){ SquareMatrix X; for (int i = 0; i < SIZE; ++i) { X[i][i] = e; } return X; } inline const ar &operator[](int k) const{ return (A.at(k)); } inline ar &operator[](int k) { return (A.at(k)); } SquareMatrix &operator+= (const SquareMatrix &B){ for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { (*this)[i][j] += B[i][j]; } } return (*this); } SquareMatrix &operator-= (const SquareMatrix &B){ for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { (*this)[i][j] -= B[i][j]; } } return (*this); } SquareMatrix &operator*=(const SquareMatrix &B) { SquareMatrix C; for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { for (int k = 0; k < SIZE; ++k) { C[i][j] += ((*this)[i][k] * B[k][j]); } } } A.swap(C.A); return (*this); } SquareMatrix pow(ll n) const { SquareMatrix a = (*this), res = I(T(1)); while(n > 0){ if(n & 1) res *= a; a *= a; n >>= 1; } return res; } SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;} SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;} SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;} }; using mat = SquareMatrix<mint, 2>; int main() { ll n; cin >> n; mat x; x[0][0] = mint(1), x[1][0] = mint(1), x[0][1] = mint(1); x = x.pow(n); cout << (x[0][0] * x[1][0]).val << "\n"; return 0; }