結果

問題 No.718 行列のできるフィボナッチ数列道場 (1)
ユーザー firiexpfiriexp
提出日時 2019-08-19 20:49:51
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,557 bytes
コンパイル時間 646 ms
コンパイル使用メモリ 86,472 KB
最終ジャッジ日時 2024-11-14 21:35:00
合計ジャッジ時間 1,043 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In instantiation of 'struct SquareMatrix<modint<1000000007>, 2>':
main.cpp:112:9:   required from here
main.cpp:52:9: error: 'SquareMatrix<T, SIZE>::A' has incomplete type
   52 |     mat A;
      |         ^
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_map.h:63,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/map:61,
                 from main.cpp:5:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/tuple:1595:45: note: declaration of 'using mat = struct std::array<std::array<modint<1000000007>, 2>, 2>' {aka 'struct std::array<std::array<modint<1000000007>, 2>, 2>'}
 1595 |   template<typename _Tp, size_t _Nm> struct array;
      |                                             ^~~~~
main.cpp: In function 'int main()':
main.cpp:112:16: error: no match for 'operator[]' (operand types are 'SquareMatrix<modint<1000000007>, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int')
  112 |     mat x; x[0][0] = mint(1), x[1][0] = mint(1), x[0][1] = mint(1);
      |                ^
main.cpp:112:35: error: no match for 'operator[]' (operand types are 'SquareMatrix<modint<1000000007>, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int')
  112 |     mat x; x[0][0] = mint(1), x[1][0] = mint(1), x[0][1] = mint(1);
      |                                   ^
main.cpp:112:54: error: no match for 'operator[]' (operand types are 'SquareMatrix<modint<1000000007>, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int')
  112 |     mat x; x[0][0] = mint(1), x[1][0] = mint(1), x[0][1] = mint(1);
      |                                                      ^
main.cpp:114:18: error: no match for 'operator[]' (operand types are 'SquareMatrix<modint<1000000007>, 2>::ar' {aka 'std::array<modint<1000000007>, 2>'} and 'int')
  114 |     cout << (x[0][0] * x[1][0]).val << "\n";
      |                  ^
main.cpp:114:28: error: no match for 'operator[]' (operand types are

ソースコード

diff #

#include <limits>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>

static const int MOD = 1000000007;
using ll = long long;
using u32 = uint32_t;
using namespace std;

template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;

template <ll M = MOD> struct modint {
public:
    ll val;
    explicit modint(const ll x = 0) : val(x) {}
    modint operator+(const modint a) const { return modint(*this) += a; }
    modint operator-(const modint a) const { return modint(*this) -= a; }
    modint operator*(const modint a) const { return modint(*this) *= a; }
    modint operator/(const modint a) const { return modint(*this) /= a; }
    modint operator-() const { return modint(M-val); }
    modint inv(){
        ll u = 1, v = 0, s = 0, t = 1, m = M, x = val;
        while (x) {ll q = m/x; swap(s -= q*u, u); swap(t -= q*v, v); swap(m -= q*x, x); }
        if(s < 0) s += M;
        return modint(s);
    }
    modint pow(ll n){
        ll u = 1, xx = val;
        while (n > 0){ if (n&1) u = u * xx % M; xx = xx * xx % M; n >>= 1; }
        return u;
    }
    modint &operator+=(const modint a){ val += a.val; if(val >= M) val -= M; return *this; }
    modint &operator-=(const modint a){ val -= a.val; if(val < 0) val += M; return *this; }
    modint &operator*=(const modint a){ val = val * a.val % M; return *this; }
    modint &operator/=(const modint a){ val = (val*a.inv()) %M; return *this;}
};

using mint = modint<MOD>;

template<class T, size_t SIZE>
struct SquareMatrix {
    using ar = array<T, SIZE>;
    using mat = array<ar, SIZE>;
    mat A;
    SquareMatrix() = default;
    static SquareMatrix I(T e){
        SquareMatrix X;
        for (int i = 0; i < SIZE; ++i) {
            X[i][i] = e;
        }
        return X;
    }

    inline const ar &operator[](int k) const{ return (A.at(k)); }
    inline ar &operator[](int k) { return (A.at(k)); }
    SquareMatrix &operator+= (const SquareMatrix &B){
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                (*this)[i][j] += B[i][j];
            }
        }
        return (*this);
    }

    SquareMatrix &operator-= (const SquareMatrix &B){
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                (*this)[i][j] -= B[i][j];
            }
        }
        return (*this);
    }

    SquareMatrix &operator*=(const SquareMatrix &B) {
        SquareMatrix C;
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                for (int k = 0; k < SIZE; ++k) {
                    C[i][j] += ((*this)[i][k] * B[k][j]);
                }
            }
        }
        A.swap(C.A);
        return (*this);
    }

    SquareMatrix pow(ll n) const {
        SquareMatrix a = (*this), res = I(T(1));
        while(n > 0){
            if(n & 1) res *= a;
            a *= a;
            n >>= 1;
        }
        return res;
    }
    SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;}
    SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;}
    SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;}
};

using mat = SquareMatrix<mint, 2>;
int main() {
    ll n; cin >> n;
    mat x; x[0][0] = mint(1), x[1][0] = mint(1), x[0][1] = mint(1);
    x = x.pow(n);
    cout << (x[0][0] * x[1][0]).val << "\n";
    return 0;
}
0