結果
問題 | No.245 貫け! |
ユーザー | pekempey |
提出日時 | 2015-07-17 22:29:00 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 37 ms / 5,000 ms |
コード長 | 7,820 bytes |
コンパイル時間 | 1,600 ms |
コンパイル使用メモリ | 172,296 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-08 08:28:45 |
合計ジャッジ時間 | 2,387 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 4 ms
6,944 KB |
testcase_10 | AC | 5 ms
6,940 KB |
testcase_11 | AC | 14 ms
6,940 KB |
testcase_12 | AC | 35 ms
6,940 KB |
testcase_13 | AC | 35 ms
6,940 KB |
testcase_14 | AC | 33 ms
6,940 KB |
testcase_15 | AC | 35 ms
6,940 KB |
testcase_16 | AC | 37 ms
6,940 KB |
testcase_17 | AC | 36 ms
6,944 KB |
testcase_18 | AC | 36 ms
6,940 KB |
testcase_19 | AC | 37 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> #define rep(i, a) for (int i = 0; i < (a); i++) #define rep2(i, a, b) for (int i = (a); i < (b); i++) using namespace std; typedef long long ll; const ll inf = 1e9; const ll mod = 1e9 + 7; const double eps = 1e-5; struct Point { double x, y; Point() : x(0), y(0) {} Point(double x, double y) : x(x), y(y) {} double norm() { return x * x + y * y; } double abs() { return sqrt(norm()); } double arg() { return atan2(y, x); } double dot(Point p) { return x * p.x + y * p.y; } double cross(Point p) { return x * p.y - y * p.x; } Point operator +(Point p) { return Point(x + p.x, y + p.y); } Point operator -(Point p) { return Point(x - p.x, y - p.y); } Point operator *(double k) { return Point(x * k, y * k); } Point operator /(double k) { return Point(x / k, y / k); } static Point polar(double r, double a) { return Point(r * cos(a), r * sin(a)); } static double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; } static double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; } }; struct Segment { Point p1, p2; Segment(double x1, double y1, double x2, double y2) : p1(x1, y1), p2(x2, y2) {} Segment(Point p1, Point p2) : p1(p1), p2(p2) {} Point project(Point p) { Point base = p2 - p1; double r = Point::dot(p - p1, base) / base.norm(); return p1 + base * r; } }; struct Circle { Point c; double r; Circle() : c(0, 0), r(0) {} Circle(double x, double y, double r) : c(x, y), r(r) {} }; typedef Segment Line; typedef vector<Point> Polygon; Point normal(Point p) { return Point(-p.y, p.x); } double abs(Point p) { return p.abs(); } pair<Point, Point> intersection(Circle c1, Circle c2) { double d = (c1.c - c2.c).abs(); double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d)); double t = (c2.c - c1.c).arg(); return make_pair(c1.c + Point::polar(c1.r, t + a), c1.c + Point::polar(c1.r, t - a)); } double distanceLP(Line l, Point p) { return abs((l.p2 - l.p1).cross(p - l.p1) / (l.p2 - l.p1).abs()); } double distanceSP(Segment s, Point p) { if ((s.p2 - s.p1).dot(p - s.p1) < 0.0) return (p - s.p1).abs(); if ((s.p1 - s.p2).dot(p - s.p2) < 0.0) return (p - s.p2).abs(); return distanceLP(s, p); } int ccw(Point p0, Point p1, Point p2) { Point a = p1 - p0; Point b = p2 - p0; if (Point::cross(a, b) > eps) return 1; if (Point::cross(a, b) < -eps) return -1; if (Point::dot(a, b) < -eps) return 2; if (a.norm() < b.norm()) return -2; return 0; } bool intersectsL(Point p1, Point p2, Point p3, Point p4) { return ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0; } bool intersects(Point p1, Point p2, Point p3, Point p4) { return ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0; } bool intersects2(Point p1, Point p2, Point p3, Point p4) { return ccw(p1, p2, p3) * ccw(p1, p2, p4) < 0 && ccw(p3, p4, p1) * ccw(p3, p4, p2) < 0; } bool intersects(Segment s1, Segment s2) { return intersects(s1.p1, s1.p2, s2.p1, s2.p2); } double distance(Segment s1, Segment s2) { if (intersects(s1, s2)) return 0; return min(min(distanceSP(s1, s2.p1), distanceSP(s1, s2.p2)), min(distanceSP(s2, s1.p1), distanceSP(s2, s1.p2))); } Point intersection(Segment s1, Segment s2) { Point base = s2.p2 - s2.p1; double d1 = abs(Point::cross(base, s1.p1 - s2.p1)); double d2 = abs(Point::cross(base, s1.p2 - s2.p1)); double t = d1 / (d1 + d2); return s1.p1 + (s1.p2 - s1.p1) * t; } bool intersectsE(Circle c, Line l) { return distanceLP(l, c.c) <= c.r + eps; } bool intersects(Circle c, Line l) { return distanceLP(l, c.c) < c.r - eps; } pair<Point, Point> intersection(Circle c, Line l) { Point pr = l.project(c.c); Point e = (l.p2 - l.p1) / (l.p2 - l.p1).abs(); double base = sqrt(c.r * c.r - (pr - c.c).norm()); return make_pair(pr + e * base, pr - e * base); } int contains(Polygon &ps, Point p) { int n = ps.size(); bool even = false; for (int i = 0; i < n; i++) { Point a = ps[i] - p, b = ps[(i + 1) % n] - p; if (abs(Point::cross(a, b)) < eps && Point::dot(a, b) < eps) return 1; if (a.y > b.y) swap(a, b); if (a.y < eps && eps < b.y && Point::cross(a, b) > eps) even = !even; } return even ? 2 : 0; } struct Rectangle { double x1, y1, x2, y2, h; Rectangle() : x1(0), y1(0), x2(0), y2(0) {} Rectangle(double x1, double y1, double x2, double y2) : x1(x1), y1(y1), x2(x2), y2(y2) {} Rectangle expand(double dx, double dy) { return Rectangle(x1 - dx, y1 - dy, x2 + dx, y2 + dy); } }; bool contains(Point p, Rectangle rc) { return rc.x1 + eps < p.x && p.x < rc.x2 - eps && rc.y1 + eps < p.y && p.y < rc.y2 - eps; } bool intersects(Point p1, Point p2, Rectangle rc) { if (contains(p1, rc)) return true; if (contains(p2, rc)) return true; if (intersects2(p1, p2, Point(rc.x1, rc.y1), Point(rc.x1, rc.y2))) return true; if (intersects2(p1, p2, Point(rc.x1, rc.y2), Point(rc.x2, rc.y2))) return true; if (intersects2(p1, p2, Point(rc.x2, rc.y2), Point(rc.x2, rc.y1))) return true; if (intersects2(p1, p2, Point(rc.x2, rc.y1), Point(rc.x1, rc.y1))) return true; return false; } bool intersects(Segment s, Circle c) { return distanceSP(s, c.c) < c.r - eps; } Point normalize(Point p) { return p / p.abs(); } Point rot(Point p, double cost, double sint) { Point q; q.x = p.x * cost - p.y * sint; q.y = p.x * sint + p.y * cost; return q; } vector<Point> tangent(Point p, Circle c) { Point d = normalize(c.c - p); double dist = (c.c - p).abs(); double sint = c.r / dist; double cost = sqrt(1 - sint * sint); double len = sqrt(dist * dist - c.r * c.r); vector<Point> res; res.push_back(p + rot(d, cost, sint) * len); res.push_back(p + rot(d, cost, -sint) * len); return res; } vector<Line> common_tangent(Circle p, Circle q) { double pr = p.r, qr = q.r; Point pc = p.c, qc = q.c; double d = abs(pc - qc), dr = abs(pr - qr), sr = abs(pr + qr); vector<Line> ret; if (d > sr) { // cross pair Point cp = (pc * qr + qc * pr) / sr; vector<Point> pts = tangent(cp, p), qts = tangent(cp, q); ret.push_back(Line(pts[0], qts[0])); ret.push_back(Line(pts[1], qts[1])); } else if (abs(d - sr) < eps) { // cross pair coinside Point cp = (pc * qr + qc * pr) / sr; ret.push_back(Line(cp, cp)); } if (d > dr) { // outer pair if (abs(pr - qr) < eps) { Point v = (qc - pc) / d; v = normal(v); ret.push_back(Line(pc + v, qc + v)); ret.push_back(Line(pc - v, qc - v)); } else { Point cp = pc + (qc - pc) * pr / (pr - qr); vector<Point> pts = tangent(cp, p), qts = tangent(cp, q); ret.push_back(Line(pts[0], qts[0])); ret.push_back(Line(pts[1], qts[1])); } } else if (abs(d - dr) < eps) { // outer pair coinside Point cp = (qc - pc) * pr / (pr - qr); ret.push_back(Line(cp, cp)); } return ret; } int N; Point ps[200]; int main() { cin >> N; rep (i, N) { double a, b, c, d; cin >> a >> b >> c >> d; ps[i * 2] = Point(a, b); ps[i * 2 + 1] = Point(c, d); } int ans = 0; rep (i, N * 2) { rep (j, N * 2) { int c = 0; rep (k, N) { if (intersectsL(ps[i], ps[j], ps[k * 2], ps[k * 2 + 1])) { c++; } } ans = max(ans, c); } } cout << ans << endl; return 0; }