結果
問題 | No.245 貫け! |
ユーザー | omu |
提出日時 | 2015-07-17 22:30:22 |
言語 | C++11 (gcc 13.3.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,620 bytes |
コンパイル時間 | 728 ms |
コンパイル使用メモリ | 98,172 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-08 08:28:51 |
合計ジャッジ時間 | 1,909 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 66 ms
6,940 KB |
testcase_16 | WA | - |
testcase_17 | AC | 75 ms
6,940 KB |
testcase_18 | WA | - |
testcase_19 | WA | - |
ソースコード
#include <cstdio> #include <iostream> #include <vector> #include <map> #include <set> #include <string> #include <cstring> #include <sstream> #include <algorithm> #include <functional> #include <queue> #include <stack> #include <cmath> #include <iomanip> #include <list> #include <tuple> #include <bitset> #include <ciso646> using namespace std; inline bool cheak(int x, int y, int xMax, int yMax){ return x >= 0 && y >= 0 && xMax > x && yMax > y; } inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template<class T> inline T sqr(T x) { return x*x; } typedef pair<int, int> P; typedef tuple<int, int, int> T; typedef long long ll; typedef unsigned long long ull; #define For(i,a,b) for(int (i) = (a);i < (b);(i)++) #define rep(i,n) For(i,0,n) #define clr(a) memset((a), 0 ,sizeof(a)) #define mclr(a) memset((a), -1 ,sizeof(a)) #define all(a) (a).begin(),(a).end() #define sz(a) (sizeof(a)) #define Fill(a,v) fill((int*)a,(int*)(a+(sz(a)/sz(*(a)))),v) const int dx[8] = { 1, 0, -1, 0, 1, 1, -1, -1 }, dy[8] = { 0, -1, 0, 1, -1, 1, -1, 1 }; const int mod = 1000000007; const int INF = 1e9; //-------------------------------------- //------------幾何ライブラリ------------ //-------------------------------------- //-------------------------------------- //----------------定義------------------ //-------------------------------------- #define EPS (1e-10) #define equals(a,b) (fabs((a)-(b)) < EPS) //-------------------------------------- //----------------構造体---------------- //-------------------------------------- //点 ベクトル struct Point { double x, y; Point(double x = 0, double y = 0){ this->x = x; this->y = y; } Point operator + (Point p){ return Point(x + p.x, y + p.y); } Point operator - (Point p){ return Point(x - p.x, y - p.y); } Point operator * (double k){ return Point(x * k, y * k); } Point operator / (double k){ return Point(x / k, y / k); } double norm(){ return x * x + y * y; } double abs(){ return sqrt(norm()); } double dot(Point a){ return x*a.x + y*a.y; } double cross(Point a){ return x*a.y - y*a.x; } //大小関係の判定 (X座標を優先している) bool operator < (const Point &p) const{ return x != p.x ? x < p.x : y < p.y; } bool operator == (const Point &p) const{ return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS; } }; typedef Point Vector; //線分 直線 struct Segment{ Point p1, p2; Segment(double x1 = 0, double x2 = 0, double y1 = 0, double y2 = 0){ p1 = Point(x1, y1); p2 = Point(x2, y2); } Segment(Point p1, Point p2) :p1(p1), p2(p2) {} }; typedef Segment Line; //円 class Circle{ public: Point c; double r; Circle(Point c = Point(), double r = 0.0) :c(c), r(r){} }; //多角形 typedef vector<Point> Polygon; //-------------------------------------- //----------------関数------------------ //-------------------------------------- //ベクトルのノルム double norm(Vector a){ return a.x * a.x + a.y * a.y; } //ベクトルの大きさ double abs(Vector a){ return sqrt(norm(a)); } //ベクトルの内積 double dot(Vector a, Vector b){ return a.x * b.x + a.y * b.y; } //ベクトルの外積 double cross(Vector a, Vector b){ return a.x*b.y - a.y*b.x; } //直行判定 (内積が0であるか) ベクトルa,bの判定 bool isOrthogonal(Vector a, Vector b){ return equals(dot(a, b), 0.0); } //直行判定 (内積が0であるか) 線分a1-a2,b1-b2 の判定 bool isOrthogonal(Point a1, Point a2, Point b1, Point b2){ return isOrthogonal(a1 - a2, b1 - b2); } //直行判定 (内積が0であるか) 線分s1,s2の判定 bool isOrthogonal(Segment s1, Segment s2){ return isOrthogonal(s1.p2, s1.p1, s2.p2, s2.p1); } //平行判定 (外積が0であるか) ベクトルa,bの判定 bool isParallel(Vector a, Vector b){ return equals(cross(a, b), 0.0); } //平行判定 (外積が0であるか) 線分a1-a2,b1-b2 の判定 bool isParallel(Point a1, Point a2, Point b1, Point b2){ return isParallel(a1 - a2, b1 - b2); } //平行判定 (外積が0であるか) 線分s1,s2の判定 bool isParallel(Segment s1, Segment s2){ return isParallel(s1.p2, s1.p1, s2.p2, s2.p1); } //射影 Point project(Segment s, Point p){ Vector base = s.p2 - s.p1; double r = dot(p - s.p1, base) / norm(base); return s.p1 + base * r; } //反射 Point reflect(Segment s, Point p){ return p + (project(s, p) - p) * 2.0; } //反時計回り ccw (Counter-Clockwise) static const int COUNTER_CLOCKWISE = 1; //p0,p1,p2が反時計回り static const int CLOCKWISE = -1; //p0,p1,p2が時計回り static const int ONLINE_BACK = 2; //p2,p0,p1がこの順で同直線上にある場合 static const int ONLINE_FRONT = -2; //p0,p1,p2がこの順で同直線上にある場合 static const int ON_SEGMENT = 0; //p2が線分p0 p1上にある場合 /* COUNTER_CLOCKWISE = 1; //p0,p1,p2が反時計回り CLOCKWISE = -1; //p0,p1,p2が時計回り ONLINE_BACK = 2; //p2,p0,p1がこの順で同直線上にある場合 ONLINE_FRONT = -2; //p0,p1,p2がこの順で同直線上にある場合 ON_SEGMENT = 0; //p2が線分p0 p1上にある場合 */ int ccw(Point p0, Point p1, Point p2){ Vector a = p1 - p0; Vector b = p2 - p0; if (cross(a, b) > EPS) return COUNTER_CLOCKWISE; if (cross(a, b) < -EPS) return CLOCKWISE; if (dot(a, b) < -EPS) return ONLINE_BACK; if (a.norm() < b.norm()) return ONLINE_FRONT; return ON_SEGMENT; } //交差判定 (線分p1p2 と 線分p3p4の交差判定) bool intersect(Point p1, Point p2, Point p3, Point p4){ return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0); } //交差判定 (線分s1と線分s2の交差判定) bool intersect(Segment s1, Segment s2){ return intersect(s1.p1, s1.p2, s2.p1, s2.p2); } //交点取得 (線分s1,s2の交点) Point getCrossPoint(Segment s1, Segment s2){ Vector base = s2.p2 - s2.p1; double d1 = abs(cross(base, s1.p1 - s2.p1)); double d2 = abs(cross(base, s1.p2 - s2.p1)); double t = d1 / (d1 + d2); return s1.p1 + (s1.p2 - s1.p1) * t; } //交点取得 (円cと線分lの交点) pair<Point, Point> getCrossPoints(Circle c, Line l){ Vector pr = project(l, c.c); Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1); double base = sqrt(c.r * c.r - norm(pr - c.c)); return make_pair(pr + e * base, pr - e * base); } //ベクトルpとx軸がなす角度を求める double arg(Vector p){ return atan2(p.y, p.x); }; //大きさa 角度rのベクトルを返す Vector polar(double a, double r){ return Point(cos(r) * a, sin(r) * a); } //交点取得 (円c1と円c2の交点) pair<Point, Point> getCrossPoints(Circle c1, Circle c2){ double d = abs(c1.c - c2.c); double a = acos((c1.r * c1.r + d*d - c2.r * c2.r) / (2 * c1.r * d)); double t = arg(c2.c - c1.c); return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a)); } /* 点の内包 点pが多角形gに内包されているかどうかを求める IN 2 (含まれる) ON 1 (辺上) OUT 0 (含まれない) */ int contains(Polygon g, Point p){ int n = g.size(); bool x = false; for (int i = 0; i < n; i++){ Point a = g[i] - p, b = g[(i + 1) % n] - p; if (abs(cross(a, b)) < EPS && dot(a, b) < EPS)return 1; if (a.y > b.y) swap(a, b); if (a.y < EPS && EPS < b.y && cross(a, b) > EPS)x = !x; } return (x ? 2 : 0); } //距離の取得 double getDistance(Point a, Point b){ return abs(a - b); } //距離の取得 double getDistanceLP(Line l, Point p){ return abs(cross(l.p2 - l.p1, p - l.p1)) / abs(l.p2 - l.p1); } //距離の取得 double getDistanceSP(Segment s, Point p){ if (dot(s.p2 - s.p1, p - s.p1) < 0.0)return abs(p - s.p1); if (dot(s.p1 - s.p2, p - s.p2) < 0.0)return abs(p - s.p2); return getDistanceLP(s, p); } //距離の取得 double getDistance(Segment s1, Segment s2){ if (intersect(s1, s2))return 0.0; return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)), min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2))); } int main() { int n; cin >> n; vector<Line> vl; rep(i, n){ int a, b, c, d; cin >> a >> b >> c >> d; vl.push_back(Line(Point(a, b), Point(c, d))); } int ans = 0; rep(i, n)rep(j, n){ Line tl[4]; tl[0] = Line(Point(vl[i].p1), Point(vl[j].p1)); tl[1] = Line(Point(vl[i].p1), Point(vl[j].p2)); tl[2] = Line(Point(vl[i].p2), Point(vl[j].p1)); tl[3] = Line(Point(vl[i].p2), Point(vl[j].p2)); rep(k, 4){ int tmp = 0; rep(l, n){ if(intersect(tl[k],vl[l]))tmp++; } ans = max(tmp, ans); } } cout << ans << endl; return 0; }