結果

問題 No.868 ハイパー部分和問題
ユーザー LayCurseLayCurse
提出日時 2019-08-21 06:06:02
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 974 ms / 7,000 ms
コード長 8,450 bytes
コンパイル時間 3,194 ms
コンパイル使用メモリ 216,356 KB
最終ジャッジ日時 2025-01-07 14:31:44
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
6,816 KB
testcase_01 AC 3 ms
6,816 KB
testcase_02 AC 4 ms
6,820 KB
testcase_03 AC 4 ms
6,820 KB
testcase_04 AC 3 ms
6,816 KB
testcase_05 AC 3 ms
6,820 KB
testcase_06 AC 4 ms
6,820 KB
testcase_07 AC 3 ms
6,820 KB
testcase_08 AC 3 ms
6,820 KB
testcase_09 AC 3 ms
6,816 KB
testcase_10 AC 3 ms
6,816 KB
testcase_11 AC 3 ms
6,820 KB
testcase_12 AC 3 ms
6,820 KB
testcase_13 AC 3 ms
6,816 KB
testcase_14 AC 168 ms
6,820 KB
testcase_15 AC 163 ms
6,820 KB
testcase_16 AC 162 ms
6,820 KB
testcase_17 AC 163 ms
6,820 KB
testcase_18 AC 161 ms
6,820 KB
testcase_19 AC 109 ms
6,820 KB
testcase_20 AC 110 ms
6,816 KB
testcase_21 AC 112 ms
6,820 KB
testcase_22 AC 109 ms
6,820 KB
testcase_23 AC 109 ms
6,820 KB
testcase_24 AC 111 ms
6,820 KB
testcase_25 AC 108 ms
6,820 KB
testcase_26 AC 107 ms
6,816 KB
testcase_27 AC 106 ms
6,816 KB
testcase_28 AC 112 ms
6,816 KB
testcase_29 AC 81 ms
6,816 KB
testcase_30 AC 79 ms
6,820 KB
testcase_31 AC 83 ms
6,820 KB
testcase_32 AC 161 ms
6,820 KB
testcase_33 AC 162 ms
6,820 KB
testcase_34 AC 968 ms
6,820 KB
testcase_35 AC 974 ms
6,816 KB
testcase_36 AC 176 ms
6,820 KB
testcase_37 AC 180 ms
6,816 KB
testcase_38 AC 2 ms
6,824 KB
testcase_39 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD 1000000007
struct Rand{
  unsigned w, x, y, z;
  Rand(void){
    x=123456789;
    y=362436069;
    z=521288629;
    w=(unsigned)time(NULL);
  }
  Rand(unsigned seed){
    x=123456789;
    y=362436069;
    z=521288629;
    w=seed;
  }
  inline unsigned get(void){
    unsigned t;
    t = (x^(x<<11));
    x=y;
    y=z;
    z=w;
    w = (w^(w>>19))^(t^(t>>8));
    return w;
  }
  inline double getUni(void){
    return get()/4294967296.0;
  }
  inline int get(int a){
    return (int)(a*getUni());
  }
  inline int get(int a, int b){
    return a+(int)((b-a+1)*getUni());
  }
  inline long long get(long long a){
    return(long long)(a*getUni());
  }
  inline long long get(long long a, long long b){
    return a+(long long)((b-a+1)*getUni());
  }
  inline double get(double a, double b){
    return a+(b-a)*getUni();
  }
  inline int getExp(int a){
    return(int)(exp(getUni()*log(a+1.0))-1.0);
  }
  inline int getExp(int a, int b){
    return a+(int)(exp(getUni()*log((b-a+1)+1.0))-1.0);
  }
}
;
struct mint{
  static unsigned R, RR, Rinv, W, md, mdninv;
  unsigned val;
  mint(){
  }
  mint(int a){
    val = mulR(a);
  }
  mint(unsigned a){
    val = mulR(a);
  }
  mint(long long a){
    val = mulR(a);
  }
  mint(unsigned long long a){
    val = mulR(a);
  }
  int get_inv(long long a, int md){
    long long e, s=md, t=a, u=1, v=0;
    while(s){
      e=t/s;
      t-=e*s;
      u-=e*v;
      swap(t,s);
      swap(u,v);
    }
    if(u<0){
      u+=md;
    }
    return u;
  }
  void setmod(unsigned m){
    int i;
    unsigned t;
    W = 32;
    md = m;
    R = (1ULL << W) % md;
    RR = (unsigned long long)R*R % md;
    switch(m){
      case 104857601:
      Rinv = 2560000;
      mdninv = 104857599;
      break;
      case 998244353:
      Rinv = 232013824;
      mdninv = 998244351;
      break;
      case 1000000007:
      Rinv = 518424770;
      mdninv = 2226617417U;
      break;
      case 1000000009:
      Rinv = 171601999;
      mdninv = 737024967;
      break;
      case 1004535809:
      Rinv = 234947584;
      mdninv = 1004535807;
      break;
      case 1007681537:
      Rinv = 236421376;
      mdninv = 1007681535;
      break;
      case 1012924417:
      Rinv = 238887936;
      mdninv = 1012924415;
      break;
      case 1045430273:
      Rinv = 254466304;
      mdninv = 1045430271;
      break;
      case 1051721729:
      Rinv = 257538304;
      mdninv = 1051721727;
      break;
      default:
      Rinv = get_inv(R, md);
      mdninv = 0;
      t = 0;
      for(i=0;i<((int)W);i++){
        if(t%2==0){
          t+=md;
          mdninv |= (1U<<i);
        }
        t /= 2;
      }
    }
  }
  unsigned mulR(unsigned a){
    return (unsigned long long)a*R%md;
  }
  unsigned mulR(int a){
    if(a < 0){
      a = a%md+md;
    }
    return mulR((unsigned)a);
  }
  unsigned mulR(unsigned long long a){
    return mulR((unsigned)(a%md));
  }
  unsigned mulR(long long a){
    a %= md;
    if(a < 0){
      a += md;
    }
    return mulR((unsigned)a);
  }
  unsigned reduce(unsigned T){
    unsigned m=T * mdninv, t=(unsigned)((T + (unsigned long long)m*md) >> W);
    if(t >= md){
      t -= md;
    }
    return t;
  }
  unsigned reduce(unsigned long long T){
    unsigned m=(unsigned)T * mdninv, t=(unsigned)((T + (unsigned long long)m*md) >> W);
    if(t >= md){
      t -= md;
    }
    return t;
  }
  unsigned get(){
    return reduce(val);
  }
  mint &operator+=(mint a){
    val += a.val;
    if(val >= md){
      val -= md;
    }
    return *this;
  }
  mint &operator-=(mint a){
    if(val < a.val){
      val = val + md - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  mint &operator*=(mint a){
    val = reduce((unsigned long long)val*a.val);
    return *this;
  }
  mint &operator/=(mint a){
    return *this *= a.inverse();
  }
  mint operator+(mint a){
    return mint(*this)+=a;
  }
  mint operator-(mint a){
    return mint(*this)-=a;
  }
  mint operator*(mint a){
    return mint(*this)*=a;
  }
  mint operator/(mint a){
    return mint(*this)/=a;
  }
  mint operator+(int a){
    return mint(*this)+=mint(a);
  }
  mint operator-(int a){
    return mint(*this)-=mint(a);
  }
  mint operator*(int a){
    return mint(*this)*=mint(a);
  }
  mint operator/(int a){
    return mint(*this)/=mint(a);
  }
  mint operator+(long long a){
    return mint(*this)+=mint(a);
  }
  mint operator-(long long a){
    return mint(*this)-=mint(a);
  }
  mint operator*(long long a){
    return mint(*this)*=mint(a);
  }
  mint operator/(long long a){
    return mint(*this)/=mint(a);
  }
  mint operator-(void){
    mint res;
    if(val){
      res.val=md-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  operator bool(void){
    return val!=0;
  }
  operator int(void){
    return get();
  }
  operator long long(void){
    return get();
  }
  mint inverse(){
    int a=val, b=md, t, u=1, v=0;
    mint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += md;
    }
    res.val = (unsigned long long)u*RR % md;
    return res;
  }
  mint pw(unsigned long long b){
    mint a(*this), res;
    res.val = R;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  bool operator==(int a){
    return mulR(a)==val;
  }
  bool operator!=(int a){
    return mulR(a)!=val;
  }
}
;
mint operator+(int a, mint b){
  return mint(a)+=b;
}
mint operator-(int a, mint b){
  return mint(a)-=b;
}
mint operator*(int a, mint b){
  return mint(a)*=b;
}
mint operator/(int a, mint b){
  return mint(a)/=b;
}
mint operator+(long long a, mint b){
  return mint(a)+=b;
}
mint operator-(long long a, mint b){
  return mint(a)-=b;
}
mint operator*(long long a, mint b){
  return mint(a)*=b;
}
mint operator/(long long a, mint b){
  return mint(a)/=b;
}
inline void rd(int &x){
  int k, m=0;
  x=0;
  for(;;){
    k = getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
inline void wt_L(char a){
  putchar_unlocked(a);
}
inline void wt_L(int x){
  char f[10];
  int m=0, s=0;
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    putchar_unlocked('-');
  }
  while(s--){
    putchar_unlocked(f[s]+'0');
  }
}
template<class T> inline int isPrime_L(T n){
  T i;
  if(n<=1){
    return 0;
  }
  if(n<=3){
    return 1;
  }
  if(n%2==0){
    return 0;
  }
  for(i=3;i*i<=n;i+=2){
    if(n%i==0){
      return 0;
    }
  }
  return 1;
}
unsigned mint::R, mint::RR, mint::Rinv, mint::W, mint::md, mint::mdninv;
int N;
int K;
int A[15000];
int Q;
int X;
int V;
mint dp[15001];
void go(int m){
  int i;
  if(m==0){
    return;
  }
  for(i=K;i>=m;i--){
    dp[i] += dp[i-m];
  }
}
void back(int m){
  int i;
  if(m==0){
    return;
  }
  for(i=(m);i<(K+1);i++){
    dp[i] -= dp[i-m];
  }
}
int main(){
  Rand rnd;
  int KL2GvlyY, i, j, k, m;
  {
    mint x;
    x.setmod(MD);
  }
  for(i=0;i<(100);i++){
    m = rnd.get(900000000, 1010000000);
  }
  while(!isPrime_L(m)){
    m++;
  }
  dp[0].setmod(m);
  rd(N);
  rd(K);
  {
    int Lj4PdHRW;
    for(Lj4PdHRW=0;Lj4PdHRW<(N);Lj4PdHRW++){
      rd(A[Lj4PdHRW]);
    }
  }
  rd(Q);
  dp[0] = 1;
  for(i=0;i<(N);i++){
    go(A[i]);
  }
  for(KL2GvlyY=0;KL2GvlyY<(Q);KL2GvlyY++){
    rd(X);X += (-1);
    rd(V);
    back(A[X]);
    A[X] = V;
    go(A[X]);
    if((int)dp[K]){
      wt_L(1);
      wt_L('\n');
    }
    else{
      wt_L(0);
      wt_L('\n');
    }
  }
  return 0;
}
// cLay varsion 20190820-1

// --- original code ---
// int N, K, A[15000], Q, X, V;
// 
// mint dp[15001];
// 
// void go(int m){
//   int i;
//   if(m==0) return;
//   for(i=K;i>=m;i--) dp[i] += dp[i-m];
// }
// 
// void back(int m){
//   int i;
//   if(m==0) return;
//   rep(i,m,K+1) dp[i] -= dp[i-m];
// }
// 
// {
//   int i, j, k, m;
//   Rand rnd;
// 
//   rep(i,100) m = rnd.get(9d8, 1.01d9);
//   while(!isPrime(m)) m++;
//   dp[0].setmod(m);
//   
//   rd(N,K,A(N),Q);
// 
//   dp[0] = 1;
//   rep(i,N) go(A[i]);
// 
//   rep(Q){
//     rd(X--, V);
//     back(A[X]);
//     A[X] = V;
//     go(A[X]);
//     if((int)dp[K]) wt(1); else wt(0);
//   }
// }
0