結果
問題 | No.42 貯金箱の溜息 |
ユーザー | kimiyuki |
提出日時 | 2019-08-21 14:53:53 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 534 ms / 5,000 ms |
コード長 | 5,270 bytes |
コンパイル時間 | 2,209 ms |
コンパイル使用メモリ | 204,968 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-08 22:27:31 |
合計ジャッジ時間 | 3,995 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 53 ms
6,820 KB |
testcase_01 | AC | 534 ms
6,820 KB |
testcase_02 | AC | 484 ms
6,820 KB |
ソースコード
#include <bits/stdc++.h> #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) using namespace std; template <typename X, typename T> auto make_vectors(X x, T a) { return vector<T>(x, a); } template <typename X, typename Y, typename Z, typename... Zs> auto make_vectors(X x, Y y, Z z, Zs... zs) { auto cont = make_vectors(y, z, zs...); return vector<decltype(cont)>(x, cont); } template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} inline mint<MOD> operator + (mint<MOD> other) const { int32_t c = this->value + other.value; return mint<MOD>(c >= MOD ? c - MOD : c); } inline mint<MOD> operator - (mint<MOD> other) const { int32_t c = this->value - other.value; return mint<MOD>(c < 0 ? c + MOD : c); } inline mint<MOD> operator * (mint<MOD> other) const { int32_t c = (int64_t)this->value * other.value % MOD; return mint<MOD>(c < 0 ? c + MOD : c); } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (int64_t)this->value * other.value % MOD; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0); } mint<MOD> pow(uint64_t k) const { mint<MOD> x = *this, y = 1; for (; k; k >>= 1) { if (k & 1) y *= x; x *= x; } return y; } mint<MOD> inv() const { assert (value != 0); int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } assert (value * x + MOD * y == b); assert (b == 1); return x; } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> operator /= (mint<MOD> other) { return *this *= other.inv(); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } }; template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } template <typename T, size_t H, size_t W> using matrix = array<array<T, W>, H>; template <typename T, size_t A, size_t B, size_t C> matrix<T, A, C> operator * (matrix<T, A, B> const & a, matrix<T, B, C> const & b) { matrix<T, A, C> c = {}; REP (y, A) REP (z, B) REP (x, C) c[y][x] += a[y][z] * b[z][x]; return c; } template <typename T, size_t H, size_t W> array<T, H> operator * (matrix<T, H, W> const & a, array<T, W> const & b) { array<T, H> c = {}; REP (y, H) REP (z, W) c[y] += a[y][z] * b[z]; return c; } template <typename T, size_t H, size_t W> matrix<T, H, W> operator + (matrix<T, H, W> const & a, matrix<T, H, W> const & b) { matrix<T, H, W> c; REP (y, H) REP (x, W) c[y][x] = a[y][x] + b[y][x]; return c; } template <typename T, size_t N> array<T, N> operator + (array<T, N> const & a, array<T, N> const & b) { array<T, N> c; REP (i, N) c[i] = a[i] + b[i]; return c; } template <typename T, size_t H, size_t W> matrix<T, H, W> zero_matrix() { return {}; } template <typename T, size_t N> matrix<T, N, N> unit_matrix() { matrix<T, N, N> a = {}; REP (i, N) a[i][i] = 1; return a; } template <typename T, size_t N> matrix<T, N, N> powmat(matrix<T, N, N> x, int64_t k) { matrix<T, N, N> y = unit_matrix<T, N>(); for (; k; k >>= 1) { if (k & 1) y = y * x; x = x * x; } return y; } constexpr int MOD = 1e9 + 9; constexpr int SIZE = 6; const array<int, SIZE> VALUE = { 1, 5, 10, 50, 100, 500 }; int main() { // prepare vector<array<array<mint<MOD>, SIZE>, SIZE> > dp(VALUE[SIZE - 1] + 1); REP (l, SIZE) { dp[0][l][l] = 1; } REP (a, dp.size()) REP (m, SIZE) REP3 (r, m, SIZE) { REP (l, m + 1) if (a + VALUE[l] < dp.size()) { dp[a + VALUE[l]][l][r] += dp[a][m][r]; } } matrix<mint<MOD>, SIZE, SIZE> f = {}; REP (y, SIZE) REP (x, SIZE) { f[y][x] = dp[VALUE[SIZE - 1]][y][x]; } array<mint<MOD>, SIZE> x = {}; x[SIZE - 1] = 1; auto solve1 = [&](int64_t m) { int64_t a = m / VALUE[SIZE - 1]; int64_t b = m % VALUE[SIZE - 1]; auto y = powmat(f, a) * x; mint<MOD> answer = 0; REP (l, SIZE) REP (r, SIZE) { answer += dp[b][l][r] * y[r]; } return answer; }; // query int t; cin >> t; while (t --) { int64_t m; cin >> m; cout << solve1(m) << endl; } return 0; }