結果

問題 No.42 貯金箱の溜息
ユーザー kimiyuki
提出日時 2019-08-21 15:24:40
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 575 ms / 5,000 ms
コード長 3,225 bytes
コンパイル時間 2,161 ms
コンパイル使用メモリ 198,396 KB
最終ジャッジ日時 2025-01-07 14:34:13
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
using namespace std;
template <typename X, typename T> auto make_vectors(X x, T a) { return vector<T>(x, a); }
template <typename X, typename Y, typename Z, typename... Zs> auto make_vectors(X x, Y y, Z z, Zs... zs) { auto cont = make_vectors(y, z, zs...);
    return vector<decltype(cont)>(x, cont); }
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
inline mint<MOD> operator + (mint<MOD> other) const { int32_t c = this->value + other.value; return mint<MOD>(c >= MOD ? c - MOD : c); }
inline mint<MOD> operator * (mint<MOD> other) const { int32_t c = (int64_t)this->value * other.value % MOD; return mint<MOD>(c < 0 ? c + MOD : c);
        }
inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (int64_t)this->value * other.value % MOD; if (this->value < 0) this->value += MOD
        ; return *this; }
};
template <typename T, size_t H, size_t W>
using matrix = array<array<T, W>, H>;
template <typename T, size_t A, size_t B, size_t C>
matrix<T, A, C> operator * (matrix<T, A, B> const & a, matrix<T, B, C> const & b) {
matrix<T, A, C> c = {};
REP (y, A) REP (z, B) REP (x, C) c[y][x] += a[y][z] * b[z][x];
return c;
}
template <typename T, size_t H, size_t W>
array<T, H> operator * (matrix<T, H, W> const & a, array<T, W> const & b) {
array<T, H> c = {};
REP (y, H) REP (z, W) c[y] += a[y][z] * b[z];
return c;
}
template <typename T, size_t N>
matrix<T, N, N> unit_matrix() {
matrix<T, N, N> a = {};
REP (i, N) a[i][i] = 1;
return a;
}
template <typename T, size_t N>
matrix<T, N, N> powmat(matrix<T, N, N> x, int64_t k) {
matrix<T, N, N> y = unit_matrix<T, N>();
for (; k; k >>= 1) {
if (k & 1) y = y * x;
x = x * x;
}
return y;
}
constexpr int MOD = 1e9 + 9;
constexpr int SIZE = 6;
const array<int, SIZE> VALUE = { 1, 5, 10, 50, 100, 500 };
int main() {
// prepare
vector<array<array<mint<MOD>, SIZE>, SIZE> > dp(VALUE[SIZE - 1] + 1);
REP (l, SIZE) {
dp[0][l][l] = 1;
}
REP (a, dp.size()) REP (m, SIZE) REP3 (r, m, SIZE) {
REP (l, m + 1) if (a + VALUE[l] < dp.size()) {
dp[a + VALUE[l]][l][r] += dp[a][m][r];
}
}
matrix<mint<MOD>, SIZE, SIZE> f = {};
REP (y, SIZE) REP (x, SIZE) {
f[y][x] = dp[VALUE[SIZE - 1]][y][x];
}
array<mint<MOD>, SIZE> x = {};
x[SIZE - 1] = 1;
auto solve1 = [&](int64_t m) {
int64_t a = m / VALUE[SIZE - 1];
int64_t b = m % VALUE[SIZE - 1];
auto y = powmat(f, a) * x;
mint<MOD> answer = 0;
REP (l, SIZE) REP (r, SIZE) {
answer += dp[b][l][r] * y[r];
}
return answer;
};
// query
int t; cin >> t;
while (t --) {
int64_t m; cin >> m;
cout << solve1(m).value << endl;
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0