結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー |
![]() |
提出日時 | 2019-08-25 03:46:05 |
言語 | C (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 8 ms / 5,000 ms |
コード長 | 1,961 bytes |
コンパイル時間 | 388 ms |
コンパイル使用メモリ | 32,000 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-10-15 00:23:57 |
合計ジャッジ時間 | 1,748 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
コンパイルメッセージ
main.c: In function 'in': main.c:11:14: warning: implicit declaration of function 'getchar_unlocked' [-Wimplicit-function-declaration] 11 | #define gc() getchar_unlocked() | ^~~~~~~~~~~~~~~~ main.c:17:27: note: in expansion of macro 'gc' 17 | ll n = 0; int c = gc(); | ^~
ソースコード
// yukicoder: No.194 フィボナッチ数列の理解(1) // bal4u 2019.8.25 #include <stdio.h> #include <string.h> typedef long long ll; //// 入出力関係 #if 1 #define gc() getchar_unlocked() #else #define gc() getchar() #endif ll in() { // 非負整数の入力 ll n = 0; int c = gc(); do n = 10 * n + (c & 0xf); while ((c = gc()) > ' '); return n; } #define MOD 1000000007 #define SZ 35 #define MSZ (sizeof(com)) int com[SZ][SZ], a[SZ][SZ], ans[SZ][SZ]; int N; ll K; int f[1000005]; void mat_mul1(int ab[SZ][SZ], int a[SZ][SZ], int b[SZ][SZ], int n) { int i, r; // memset(ab, 0, sizeof(std)); for (r = 1; r <= n; r++) for (i = 1; i <= n; i++) ab[r][1] = (ab[r][1] + (ll)a[r][i] * b[i][1]) % MOD; } void mat_mul(int ab[SZ][SZ], int a[SZ][SZ], int b[SZ][SZ], int n) { int i, r, c; memset(ab, 0, MSZ); for (r = 1; r <= n; r++) for (i = 1; i <= n; i++) for (c = 1; c <= n; c++) ab[r][c] = (ab[r][c] + (ll)a[r][i] * b[i][c]) % MOD; } void mat_pow(int ap[SZ][SZ], int a[SZ][SZ], int n, ll p) { int i, tmp[SZ][SZ]; memset(ap, 0, MSZ); for (i = 1; i <= n; i++) ap[i][i] = 1; while (p > 0) { if (p & 1) mat_mul(tmp, ap, a, n), memcpy(ap, tmp, MSZ); mat_mul(tmp, a, a, n), memcpy(a, tmp, MSZ); p >>= 1; } } int main() { int i, sf, S; N = (int)in(), K = in(), sf = 0; for (i = 1; i <= N; i++) { f[i] = gc() & 0xf, gc(); sf += f[i]; } f[i] = S = sf, S += f[i]; if (K <= 1000000LL) { while (i < K) { sf = ((ll)sf + f[i] - f[i-N]) % MOD; f[++i] = sf; S = (S + sf) % MOD; } if (sf < 0) sf += MOD; if (S < 0) S += MOD; } else { for (i = 1; i <= N+1; i++) a[1][i] = 1; for (i = 2; i <= N+1; i++) a[2][i] = 1; for (i = 3; i <= N+1; i++) a[i][i-1] = 1; mat_pow(com, a, N+1, K-N); // 行列のべき乗 memset(a, 0, MSZ); for (i = 1; i <= N; i++) a[N-i+2][1] = f[i]; a[1][1] = sf; mat_mul1(ans, com, a, N+2); sf = ans[2][1], S = ans[1][1]; } printf("%d %d\n", sf, S); return 0; }