結果
問題 | No.62 リベリオン(Extra) |
ユーザー |
|
提出日時 | 2019-08-25 18:59:03 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 66 ms / 5,000 ms |
コード長 | 5,528 bytes |
コンパイル時間 | 1,812 ms |
コンパイル使用メモリ | 174,220 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-06 21:46:37 |
合計ジャッジ時間 | 2,642 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 3 |
ソースコード
// includes#include <bits/stdc++.h>// macros#define pb emplace_back#define mk make_pair#define pq priority_queue#define FOR(i, a, b) for(int i=(a);i<(b);++i)#define rep(i, n) FOR(i, 0, n)#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)#define vrep(v, i) for(int i = 0; i < (v).size(); i++)#define all(x) (x).begin(),(x).end()#define sz(x) ((int)(x).size())#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())#define FI first#define SE second#define bit(n) (1LL<<(n))#define INT(n) int n; cin >> n;#define LL(n) ll n; cin >> n;#define DOUBLE(n) double n; cin >> n;using namespace std;template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr =itr; if(++titr != st.end())os << " ";} return os;}template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr;auto titr = itr; if(++titr != st.end())os << " ";} return os;}template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; autotitr = itr; if(++titr != st.end())os << " ";} return os;}template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os <<*itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os <<itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end();++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}// typesusing ll = long long int;using P = pair<int, int>;using Pli = pair<ll, int>;using Pil = pair<int, ll>;using Pll = pair<ll, ll>;using Pdd = pair<double, double>;using cd = complex<double>;// constantsconst int inf = 1e9;const ll linf = 1LL << 50;const double EPS = 1e-10;const int mod = 1e9 + 7;const int dx[4] = {-1, 0, 1, 0};const int dy[4] = {0, -1, 0, 1};// solvell w, h, d, mx, my, hx, hy, vx, vy;template<typename T>T gcd(T a, T b) {if(a > b)return gcd(b, a);if(a == 0)return b;return gcd(b % a, a);}template<typename T>T extgcd(T a, T b, T &x, T &y){T d = a;if(b != 0){d = extgcd(b, a % b, y, x);y -= (a / b) * x;}else{x = 1, y = 0;}return d;}template<typename T>pair<T, T> chinese_reminder_theorem(vector<T> b, vector<T> m){T r = 0, M = 1;for(int i = 0; i < b.size(); i++){T x, y;T d = extgcd<T>(M, m[i], x, y);if((b[i] - r) % d != 0)return make_pair(0, -1);T tmp = (b[i] - r) / d * x % (m[i] / d);r += M * tmp;M *= m[i] / d;}r %= M;if(r < 0)r += M;return make_pair(r % M, M);}int main(int argc, char const* argv[]){ios_base::sync_with_stdio(false);cin.tie(0);cout << fixed << setprecision(20);INT(q);rep(i_, q){cin >> w >> h >> d >> mx >> my >> hx >> hy >> vx >> vy;if(vx < 0){vx *= -1;mx = w - mx;hx = w - hx;}if(vy < 0){vy *= -1;my = h - my;hy = h - hy;}ll g = gcd<ll>(vx, vy);vx /= g, vy /= g;d *= g;ll gx = gcd<ll>(vx, 2 * w);ll gy = gcd<ll>(vy, 2 * h);auto check = [&](ll x, ll y){if((x - hx) % gx != 0 || (y - hy) % gy != 0)return false;ll tx, kx, ty, ky;extgcd(vx, 2*w, tx, kx);extgcd(vy, 2*h, ty, ky);tx *= (x - hx) / gx;ty *= (y - hy) / gy;vector<ll> b(2), m(2);b[0] = tx; b[1] = ty;m[0] = (2 * w) / gx; m[1] = (2 * h) / gy;rep(i, 2)b[i] = (b[i] % m[i] + m[i]) % m[i];// cout << b << endl;// cout << m << endl;auto p = chinese_reminder_theorem(b, m);// cout << p << " " << d << endl;ll M = p.second, r = p.first;if(M == -1){return false;}if(r <= d)return true;return false;};bool ok = false;if(check(mx, my))ok = true;if(check(mx, 2 * h - my))ok = true;if(check(2 * w - mx, my))ok = true;if(check(2 * w - mx, 2 * h - my))ok = true;if(ok)cout << "Hit" << endl;else cout << "Miss" << endl;}return 0;}