結果
問題 | No.766 金魚すくい |
ユーザー |
|
提出日時 | 2019-08-26 20:45:46 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 43 ms / 1,500 ms |
コード長 | 3,269 bytes |
コンパイル時間 | 1,298 ms |
コンパイル使用メモリ | 104,752 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-11-15 19:12:22 |
合計ジャッジ時間 | 4,069 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 42 |
ソースコード
#include <limits>#include <iostream>#include <algorithm>#include <iomanip>#include <map>#include <set>#include <queue>#include <stack>#include <numeric>#include <bitset>#include <cmath>static const int MOD = 1000000007;using ll = long long;using u32 = uint32_t;using namespace std;template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;template <ll M = MOD> struct modint {ll val;modint(const ll x = 0) : val(x) {val = x;while(val < 0) val += M;while(val > M) val -= M;}modint operator+(const modint a) const { return modint(*this) += a; }modint operator-(const modint a) const { return modint(*this) -= a; }modint operator*(const modint a) const { return modint(*this) *= a; }modint operator/(const modint a) const { return modint(*this) /= a; }modint operator-() const { return modint(M-val); }modint inv() const {ll u = 1, v = 0, s = 0, t = 1, m = M, x = val;while (x) {ll q = m/x; swap(s -= q*u, u); swap(t -= q*v, v); swap(m -= q*x, x); }if(s < 0) s += M;return modint(s);}modint pow(ll n) const {ll u = 1, xx = val;while (n > 0){ if (n&1) u = u * xx % M; xx = xx * xx % M; n >>= 1; }return modint(u);}modint& operator+=(const modint a){ val += a.val; if(val >= M) val -= M; return *this; }modint& operator-=(const modint a){ val -= a.val; if(val < 0) val += M; return *this; }modint& operator*=(const modint a){ val = val * a.val % M; return *this; }modint& operator/=(const modint a){ val = val * a.inv().val % M; return *this;}modint& operator=(const int& x){val = x;while(val < 0) val += M;while(val > M) val -= M;return *this;}};class Factorial {using mint = modint<MOD>;vector<mint> facts, factinv;public:explicit Factorial(int n) : facts(static_cast<u32>(n+1)), factinv(static_cast<u32>(n+1)) {facts[0] = 1;for (int i = 1; i < n+1; ++i) facts[i] = facts[i-1]*mint(i);factinv[n] = facts[n].inv();for (int i = n-1; i >= 0; --i) factinv[i] = factinv[i+1] * mint(i+1);}mint fact(int k) const {if(k >= 0) return facts[k]; else return factinv[-k];}mint operator[](const int &k) const {if(k >= 0) return facts[k]; else return factinv[-k];}mint C(int p, int q) const {if(q < 0 || p < q) return 0;return facts[p] * factinv[q] * factinv[p-q];}mint P(int p, int q) const {if(q < 0 || p < q) return 0;return facts[p] * factinv[p-q];}mint H(int p, int q) const {if(p < 0 || q < 0) return 0;return q == 0 ? 1 : C(p+q-1, q);}};using mint = modint<MOD>;int main() {int n, m, P;cin >> n >> m >> P;mint p = mint(P)*(mint(100).inv());Factorial f(n+m);vector<int> v(n);for (auto &&i : v) scanf("%d", &i);sort(v.begin(),v.end(), greater<>());mint s = 0, ans = 0, val = 1;for (int i = 0; i < n; ++i) {mint pr = (mint(1)-p).pow(i)*f.H(m, i)*p.pow(m);val -= pr;ans += pr*s;s += mint(v[i]);}cout << (ans + val*s).val << "\n";return 0;}