結果
問題 | No.36 素数が嫌い! |
ユーザー | 情報学生 |
提出日時 | 2019-08-27 12:11:41 |
言語 | Haskell (9.8.2) |
結果 |
AC
|
実行時間 | 797 ms / 5,000 ms |
コード長 | 3,230 bytes |
コンパイル時間 | 9,720 ms |
コンパイル使用メモリ | 172,672 KB |
実行使用メモリ | 9,344 KB |
最終ジャッジ日時 | 2024-11-14 07:09:34 |
合計ジャッジ時間 | 11,445 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 158 ms
8,704 KB |
testcase_01 | AC | 15 ms
8,704 KB |
testcase_02 | AC | 1 ms
6,824 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 4 ms
6,816 KB |
testcase_06 | AC | 6 ms
7,808 KB |
testcase_07 | AC | 7 ms
8,448 KB |
testcase_08 | AC | 1 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,816 KB |
testcase_11 | AC | 225 ms
9,216 KB |
testcase_12 | AC | 797 ms
9,344 KB |
testcase_13 | AC | 796 ms
9,344 KB |
testcase_14 | AC | 8 ms
8,448 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 1 ms
6,820 KB |
testcase_19 | AC | 27 ms
8,704 KB |
testcase_20 | AC | 23 ms
8,576 KB |
testcase_21 | AC | 85 ms
8,832 KB |
testcase_22 | AC | 13 ms
8,576 KB |
testcase_23 | AC | 9 ms
8,448 KB |
testcase_24 | AC | 93 ms
8,704 KB |
testcase_25 | AC | 110 ms
8,832 KB |
testcase_26 | AC | 247 ms
9,216 KB |
testcase_27 | AC | 15 ms
8,576 KB |
testcase_28 | AC | 241 ms
9,216 KB |
testcase_29 | AC | 10 ms
8,704 KB |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default [1 of 2] Compiling Main ( Main.hs, Main.o ) Main.hs:12:34: warning: [GHC-63394] [-Wx-partial] In the use of ‘head’ (imported from Prelude, but defined in GHC.List): "This is a partial function, it throws an error on empty lists. Use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty." | 12 | wheelSieve k = reverse ps ++ map head (sieve p (cycle ns)) | ^^^^ [2 of 2] Linking a.out
ソースコード
main :: IO () main = (readLn :: IO Int) >>= putStrLn . solve solve :: Int -> String solve n | length (primeFactors n) >= 3 = "YES" | otherwise = "NO" primes :: Integral int => [int] primes = wheelSieve 6 wheelSieve :: Integral int => Int -- ^ number of primes canceled by the wheel -> [int] -- ^ infinite list of primes wheelSieve k = reverse ps ++ map head (sieve p (cycle ns)) where (p:ps,ns) = wheel k isPrime :: Integral int => int -> Bool isPrime n | n > 1 = primeFactors n == [n] | otherwise = False primeFactors :: Integral int => int -> [int] primeFactors n = factors n (wheelSieve 6) where factors 1 _ = [] factors m (p:ps) | m < p*p = [m] | r == 0 = p : factors q (p:ps) | otherwise = factors m ps where (q,r) = quotRem m p sieve :: (Ord int, Num int) => int -> [int] -> [[int]] sieve p ns@(m:ms) = spin p ns : sieveComps (p+m) ms (composites p ns) type Composites int = (Queue int,[[int]]) composites :: (Ord int, Num int) => int -> [int] -> Composites int composites p ns = (Empty, map comps (spin p ns : sieve p ns)) where comps xs@(x:_) = map (x*) xs splitComposites :: Ord int => Composites int -> (int,Composites int) splitComposites (Empty, xs:xss) = splitComposites (Fork xs [], xss) splitComposites (queue, xss@((x:xs):yss)) | x < z = (x, discard x (enqueue xs queue, yss)) | otherwise = (z, discard z (enqueue zs queue', xss)) where (z:zs,queue') = dequeue queue discard :: Ord int => int -> Composites int -> Composites int discard n ns | n == m = discard n ms | otherwise = ns where (m,ms) = splitComposites ns sieveComps :: (Ord int, Num int) => int -> [int] -> Composites int -> [[int]] sieveComps cand ns@(m:ms) xs | cand == comp = sieveComps (cand+m) ms ys | cand < comp = spin cand ns : sieveComps (cand+m) ms xs | otherwise = sieveComps cand ns ys where (comp,ys) = splitComposites xs spin :: Num int => int -> [int] -> [int] spin x (y:ys) = x : spin (x+y) ys type Wheel int = ([int],[int]) wheel :: Integral int => Int -> Wheel int wheel n = iterate next ([2],[1]) !! n next :: Integral int => Wheel int -> Wheel int next (ps@(p:_),xs) = (py:ps,cancel (product ps) p py ys) where (y:ys) = cycle xs py = p + y cancel :: Integral int => int -> int -> int -> [int] -> [int] cancel 0 _ _ _ = [] cancel m p n (x:ys@(y:zs)) | nx `mod` p > 0 = x : cancel (m-x) p nx ys | otherwise = cancel m p n (x+y:zs) where nx = n + x data Queue int = Empty | Fork [int] [Queue int] enqueue :: Ord int => [int] -> Queue int -> Queue int enqueue ns = merge (Fork ns []) merge :: Ord int => Queue int -> Queue int -> Queue int merge Empty y = y merge x Empty = x merge x y | prio x <= prio y = join x y | otherwise = join y x where prio (Fork (n:_) _) = n join (Fork ns qs) q = Fork ns (q:qs) dequeue :: Ord int => Queue int -> ([int], Queue int) dequeue (Fork ns qs) = (ns,mergeAll qs) mergeAll :: Ord int => [Queue int] -> Queue int mergeAll [] = Empty mergeAll [x] = x mergeAll (x:y:qs) = merge (merge x y) (mergeAll qs)