結果

問題 No.874 正規表現間距離
ユーザー nebukuro09nebukuro09
提出日時 2019-08-30 23:16:24
言語 D
(dmd 2.106.1)
結果
WA  
実行時間 -
コード長 2,822 bytes
コンパイル時間 964 ms
コンパイル使用メモリ 110,536 KB
実行使用メモリ 20,108 KB
最終ジャッジ日時 2024-06-22 02:26:26
合計ジャッジ時間 2,522 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 WA -
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 1 ms
6,940 KB
testcase_04 AC 1 ms
6,944 KB
testcase_05 AC 1 ms
6,940 KB
testcase_06 WA -
testcase_07 AC 1 ms
6,940 KB
testcase_08 WA -
testcase_09 AC 1 ms
6,944 KB
testcase_10 WA -
testcase_11 AC 1 ms
6,944 KB
testcase_12 AC 1 ms
6,940 KB
testcase_13 AC 1 ms
6,940 KB
testcase_14 AC 1 ms
6,940 KB
testcase_15 WA -
testcase_16 AC 7 ms
6,940 KB
testcase_17 AC 8 ms
6,940 KB
testcase_18 AC 1 ms
6,944 KB
testcase_19 AC 1 ms
6,940 KB
testcase_20 AC 1 ms
6,940 KB
testcase_21 AC 1 ms
6,944 KB
testcase_22 AC 1 ms
6,944 KB
testcase_23 AC 1 ms
6,940 KB
testcase_24 AC 1 ms
6,944 KB
testcase_25 AC 29 ms
10,780 KB
testcase_26 AC 28 ms
11,492 KB
testcase_27 AC 53 ms
19,800 KB
testcase_28 WA -
testcase_29 AC 60 ms
18,316 KB
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 AC 2 ms
6,940 KB
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 AC 1 ms
6,940 KB
testcase_39 AC 1 ms
6,944 KB
testcase_40 AC 1 ms
6,940 KB
testcase_41 AC 1 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import std.stdio, std.array, std.string, std.conv, std.algorithm;
import std.typecons, std.range, std.random, std.math, std.container;
import std.numeric, std.bigint, core.bitop, core.stdc.stdio;

void main() {
    auto S = readln.chomp;
    auto T = readln.chomp;
    string s, t;
    int[] sx, tx;
    foreach (c; S) {
        if (c == '?') sx.back = 1;
        else if (c == '*') sx.back = 2;
        else s ~= c, sx ~= 0;
    }
    foreach (c; T) {
        if (c == '?') tx.back = 1;
        else if (c == '*') tx.back = 2;
        else t ~= c, tx ~= 0;
    }
    auto n = s.length.to!int;
    auto m = t.length.to!int;

    auto dp = new int[][](n + 1, m + 1);
    foreach (i; 0..n+1) dp[i][] = 1 << 29;
    dp[0][0] = 0;

    foreach (i; 0..n+1) {
        foreach (j; 0..m+1) {
            if (i == n && j == m) {
                continue;
            }
            if (i == n) {
                dp[i][j+1] = min(dp[i][j+1], dp[i][j] + (tx[j] == 0));
                continue;
            }
            if (j == m) {
                dp[i+1][j] = min(dp[i+1][j], dp[i][j] + (sx[i] == 0));
                continue;
            }

            if (sx[i] == 2 && tx[j] == 2) {
                dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j]);
                dp[i+1][j] = min(dp[i+1][j], dp[i][j]);
                dp[i][j+1] = min(dp[i][j+1], dp[i][j]);
            } else if (sx[i] == 2) {
                dp[i+1][j] = min(dp[i+1][j], dp[i][j]);
                if (s[i] == t[j]) {
                    dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j]);
                    dp[i][j+1] = min(dp[1][j+1], dp[i][j]);
                }
            } else if (tx[j] == 2) {
                dp[i][j+1] = min(dp[i][j+1], dp[i][j]);
                if (s[i] == t[j]) {
                    dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j]);
                    dp[i+1][j] = min(dp[i+1][j], dp[i][j]);
                }
            }

            if (sx[i] == 1 && tx[j] == 1) {
                dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j]);
                dp[i+1][j] = min(dp[i+1][j], dp[i][j]);
                dp[i][j+1] = min(dp[i][j+1], dp[i][j]);
            } else if (sx[i] == 1) {
                dp[i+1][j] = min(dp[i+1][j], dp[i][j]);
                if (s[i] == t[j]) {
                    dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j]);
                }
            } else if (tx[j] == 1) {
                dp[i][j+1] = min(dp[i][j+1], dp[i][j]);
                if (s[i] == t[j]) {
                    dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j]);
                }
            }

            if (s[i] == t[j]) {
                dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j]);
            }

            dp[i+1][j] = min(dp[i+1][j], dp[i][j] + 1);
            dp[i][j+1] = min(dp[i][j+1], dp[i][j] + 1);
        }
    }


    dp[n][m].writeln;
}
0