結果
| 問題 |
No.96 圏外です。
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-05 00:50:35 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 12,796 bytes |
| コンパイル時間 | 3,052 ms |
| コンパイル使用メモリ | 199,340 KB |
| 実行使用メモリ | 33,152 KB |
| 最終ジャッジ日時 | 2024-12-30 06:50:52 |
| 合計ジャッジ時間 | 36,340 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 WA * 1 TLE * 1 |
ソースコード
// includes
#include <bits/stdc++.h>
using namespace std;
// macros
#define pb emplace_back
#define mk make_pair
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define bit(n) (1LL<<(n))
// functions
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
// types
using ll = long long int;
using P = pair<int, int>;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1000000007;
//const int dx[4] = {-1, 0, 1, 0};
//const int dy[4] = {0, -1, 0, 1};
// io
struct fast_io{
fast_io(){ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20);}
} fast_io_;
typedef struct UnionFind_ {
vector<int> par;
vector<int> rank_;
UnionFind_(){}
explicit UnionFind_(int n): rank_(n, 0) {
par.resize(n);
for(int i = 0; i < n; i++)par[i] = i;
}
int find(int x) {
if(par[x] == x)return x;
else return par[x] = find(par[x]);
}
bool same(int x, int y) {
if(find(x) == find(y))return true;
else return false;
}
bool unite(int x, int y){
int xp = find(x);
int yp = find(y);
if(xp == yp)return false;
if(rank_[xp] > rank_[yp])par[yp] = xp;
else if(rank_[xp] < rank_[yp])par[xp] = yp;
else {
par[yp] = xp;
rank_[xp]++;
}
return true;
}
} UnionFind;
struct point2d{
double x, y;
point2d(){}
point2d(double x, double y): x(x), y(y){}
point2d operator+(const point2d &r) const{
return point2d(x + r.x, y + r.y);
}
point2d operator-(const point2d &r) const{
return point2d(x - r.x, y - r.y);
}
point2d& operator+=(const point2d &r){
*this = *this + r;
return *this;
}
point2d& operator-=(const point2d &r){
*this = *this - r;
return *this;
}
bool operator==(const point2d &r) const{
return abs(x - r.x) < EPS && abs(y - r.y) < EPS;
}
bool operator!=(const point2d &r) const{
return !(*this == r);
}
bool operator<(const point2d &r) const{
if(abs(x - r.x) >= EPS)return x < r.x;
return y < r.y;
}
};
point2d operator*(double x, const point2d &p){
return point2d(x * p.x, x * p.y);
}
point2d operator/(const point2d &p, double x){
return point2d(p.x / x, p.y / x);
}
double norm(const point2d &a){
return sqrt(a.x * a.x + a.y * a.y);
}
double dis(const point2d &a, const point2d &b){
point2d c = a - b;
return norm(c);
}
double inner_product(const point2d &a, const point2d &b){
return a.x * b.x + a.y * b.y;
}
double outer_product(const point2d &a, const point2d &b){
return a.x * b.y - a.y * b.x;
}
double cosine(const point2d &a, const point2d &b){
return inner_product(a, b) / norm(a) / norm(b);
}
double cross(const point2d &o, const point2d &a, const point2d &b){
return outer_product(a - o, b - o);
}
vector<point2d> convex_hull(vector<point2d> vec){
int n = vec.size(), k = 0;
if(n < 3)return vec;
vector<point2d> ch(2 * n);
sort(vec.begin(), vec.end());
// lower
for(int i = 0; i < n; i++){
while(k >= 2 && cross(ch[k-2], ch[k-1], vec[i]) <= 0.)k--;
ch[k++] = vec[i];
}
// upper
for(int i = n - 1, t = k + 1; i > 0; i--){
while(k >= t && cross(ch[k-2], ch[k-1], vec[i-1]) <= 0.)k--;
ch[k++] = vec[i-1];
}
ch.resize(k-1);
return ch;
}
struct point3d{
double x, y, z;
point3d(){}
point3d(double x, double y, double z): x(x), y(y), z(z){}
point3d operator+(const point3d &r) const{
return point3d(x + r.x, y + r.y, z + r.z);
}
point3d operator-(const point3d &r) const{
return point3d(x - r.x, y - r.y, z - r.z);
}
point3d& operator+=(const point3d &r){
*this = *this + r;
return *this;
}
point3d& operator-=(const point3d &r){
*this = *this - r;
return *this;
}
bool operator==(const point3d &r) const{
return abs(x - r.x) < EPS && abs(y - r.y) < EPS && abs(z - r.z) < EPS;
}
bool operator!=(const point3d &r) const{
return !(*this == r);
}
bool operator<(const point3d &r) const{
if(abs(x - r.x) >= EPS)return x < r.x;
if(abs(y - r.y) >= EPS)return y < r.y;
return z < r.z;
}
};
point3d operator*(double x, const point3d &p){
return point3d(x * p.x, x * p.y, x * p.z);
}
point3d operator/(const point3d &p, double x){
return point3d(p.x / x, p.y / x, p.z / x);
}
double norm(const point3d &a){
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z);
}
double dis(const point3d &a, const point3d &b){
point3d c = a - b;
return norm(c);
}
double inner_product(const point3d &a, const point3d &b){
return a.x * b.x + a.y * b.y + a.z * b.z;
}
point3d outer_product(const point3d &a, const point3d &b){
return point3d(a.y * b.z - a.z * b.y,
a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
double cosine(const point3d &a, const point3d &b){
return inner_product(a, b) / norm(a) / norm(b);
}
struct plane3d{
double a, b, c, d;
double norm = 1.;
plane3d(){}
plane3d(double a, double b, double c, double d): a(a), b(b), c(c), d(d){
build();
}
plane3d(const point3d pa, const point3d pb, const point3d pc){
point3d re = outer_product(pb - pa, pc - pa);
a = re.x, b = re.y, c = re.z;
d = - (a * pa.x + b * pa.y + c * pa.z);
build();
}
void build(){
norm = sqrt(a * a + b * b + c * c);
}
double dis(point3d p){
return abs(a * p.x + b * p.y + c * p.z + d) / norm;
}
double val(const point3d &p){
return a * p.x + b * p.y + c * p.z + d;
}
};
point2d projection(const point2d &p, const point2d &p1, const point2d &p2){
point2d p2p1 = p2 - p1, pp1 = p - p1;
if(abs(inner_product(p2p1, pp1)) < EPS)return p1;
double cosi = cosine(p2p1, pp1);
return p1 + (dis(p, p1) * cosi / norm(p2 - p1)) * (p2 - p1);
}
point2d reflection(const point2d &p, const point2d &p1, const point2d &p2){
point2d pr = projection(p, p1, p2);
return p + 2. * (pr - p);
}
struct plane2d{
double a, b, c;
double norm;
plane2d(){}
plane2d(double a, double b, double c): a(a), b(b), c(c){}
plane2d(const point2d &p, const point2d &q){
point2d l = p - q;
a = l.y, b = - l.x;
c = - a * p.x - b * p.y;
build();
}
void build(){
norm = sqrt(a * a + b * b);
}
double dis(const point2d &p){
return abs(a * p.x + b * p.y + c) / norm;
}
double val(const point2d &p){
return a * p.x + b * p.y + c;
}
};
bool parallel(const plane2d &p, const plane2d &q){
return abs(p.a * q.b - p.b * q.a) < EPS;
}
bool orthogonal(const plane2d &p, const plane2d &q){
return abs(p.a * q.a + p.b * q.b) < EPS;
}
bool intersection(const point2d &p1, const point2d &p2, const point2d &p3, const point2d &p4){
plane2d pl1(p1, p2), pl2(p3, p4);
if(abs(pl1.val(p3)) < EPS && min(p1.x, p2.x) <= p3.x && p3.x <= max(p1.x, p2.x) &&
min(p1.y, p2.y) <= p3.y && p3.y <= max(p1.y, p2.y))return true;
if(abs(pl1.val(p4)) < EPS && min(p1.x, p2.x) <= p4.x && p4.x <= max(p1.x, p2.x) &&
min(p1.y, p2.y) <= p4.y && p4.y <= max(p1.y, p2.y))return true;
if(abs(pl2.val(p1)) < EPS && min(p3.x, p4.x) <= p1.x && p1.x <= max(p3.x, p4.x) &&
min(p3.y, p4.y) <= p1.y && p1.y <= max(p3.y, p4.y))return true;
if(abs(pl2.val(p2)) < EPS && min(p3.x, p4.x) <= p2.x && p2.x <= max(p3.x, p4.x) &&
min(p3.y, p4.y) <= p2.y && p2.y <= max(p3.y, p4.y))return true;
return pl1.val(p3) * pl1.val(p4) <= - EPS && pl2.val(p1) * pl2.val(p2) <= - EPS;
}
double closest_pair(vector<point2d> &a, int l, int r){
double d = numeric_limits<double>::max();
if(r - l == 1)return d;
int m = (l + r) / 2;
double x = a[m].x;
d = min(closest_pair(a, l, m), closest_pair(a, m, r));
inplace_merge(a.begin() + l, a.begin() + m, a.begin() + r, [](const point2d &u, const point2d &v){
return u.y < v.y;
});
vector<point2d> v;
for(int i = l; i < r; i++){
if(abs(x - a[i].x) >= d)continue;
for(int j = 0; j < v.size(); j++){
double dx = a[i].x - v[v.size()-j-1].x;
double dy = a[i].y - v[v.size()-j-1].y;
if(dy >= d)break;
d = min(d, sqrt(dx * dx + dy * dy));
}
v.push_back(a[i]);
}
return d;
}
double closest_pair(vector<point2d> &a){
sort(a.begin(), a.end(), [](const point2d &u, const point2d &v){
if(u.x != v.x)return u.x < v.x;
return u.y < v.y;
});
return closest_pair(a, 0, int(a.size()));
}
// begin library circle here
// usage of this library: circle c(point2d(x, y), r);
// usage of this library: circle_crossing_state(c1, c2);
struct circle{
point2d c;
double r;
circle(){}
circle(point2d c, double r): c(c), r(r){}
};
enum circle_crossing_state{
NOTCROSS = 4,
CIRCUMSCRIBE = 3,
INTERSECT = 2,
INSCRIBED = 1,
INCLUDED = 0,
};
circle_crossing_state circle_crossing(const circle &a, const circle &b){
double d = dis(a.c, b.c);
cout << setprecision(20);
if(d > a.r + b.r + EPS)return NOTCROSS;
if(abs(d - (a.r + b.r)) < EPS)return CIRCUMSCRIBE;
if(abs(d - abs(a.r - b.r)) < EPS)return INSCRIBED;
if(d + EPS < abs(a.r - b.r))return INCLUDED;
return INTERSECT;
}
// end library
// begin library square_test here
// usage of this library: square_test(x, y);
// for int or long long
template <typename T>
bool square_test(const vector<T> &x, const vector<T> &y){
assert(x.size() == 4);
assert(y.size() == 4);
vector<T> v;
for(size_t i = 0; i < x.size(); i++){
for(size_t j = i + 1; j < y.size(); j++){
T d = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
v.push_back(d);
}
}
sort(v.begin(), v.end());
T b = v[0];
if(b == 0)return false;
for(int i = 1; i < 4; i++){
if(v[i] != b)return false;
}
for(int i = 4; i < 6; i++){
if(v[i] != b * 2)return false;
}
return true;
}
// end library
vector<int> v[120010];
int main(int argc, char const* argv[])
{
int n;
cin >> n;
vector<ll> x(n), y(n);
rep(i, n)cin >> x[i] >> y[i];
map<P, int> mp;
rep(i, n)mp[mk(x[i], y[i])] = i;
UnionFind uf(n);
rep(i, n){
for(int dx = -10; dx <= 10; dx++){
for(int dy = -10; dy <= 10; dy++){
ll X = x[i] + dx;
ll Y = y[i] + dy;
ll di = dx * dx + dy * dy;
if(di <= 100 && mp.find(mk(X, Y)) != mp.end()){
int idx = mp[mk(X, Y)];
uf.unite(i, idx);
}
}
}
}
double res = 2.;
rep(i, n)v[uf.find(i)].pb(i);
rep(i, n){
if(sz(v[i]) == 0)continue;
vector<point2d> vp(sz(v[i]));
rep(j, sz(v[i]))vp[j] = point2d(x[v[i][j]], y[v[i][j]]);
auto ch = convex_hull(vp);
rep(j, sz(ch)){
FOR(k, j + 1, sz(ch)){
double di = dis(ch[k], ch[j]);
res = max(res, di + 2.);
}
}
}
cout << res << endl;
return 0;
}