結果
問題 | No.563 超高速一人かるた large |
ユーザー | chocorusk |
提出日時 | 2019-09-05 18:16:23 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 64 ms / 3,000 ms |
コード長 | 7,958 bytes |
コンパイル時間 | 2,650 ms |
コンパイル使用メモリ | 119,864 KB |
実行使用メモリ | 58,112 KB |
最終ジャッジ日時 | 2024-06-11 22:54:04 |
合計ジャッジ時間 | 2,811 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 5 ms
6,400 KB |
testcase_04 | AC | 6 ms
7,680 KB |
testcase_05 | AC | 8 ms
8,064 KB |
testcase_06 | AC | 18 ms
14,848 KB |
testcase_07 | AC | 21 ms
17,408 KB |
testcase_08 | AC | 31 ms
23,296 KB |
testcase_09 | AC | 38 ms
28,800 KB |
testcase_10 | AC | 8 ms
6,784 KB |
testcase_11 | AC | 8 ms
6,528 KB |
testcase_12 | AC | 8 ms
6,272 KB |
testcase_13 | AC | 8 ms
6,272 KB |
testcase_14 | AC | 8 ms
6,528 KB |
testcase_15 | AC | 8 ms
6,400 KB |
testcase_16 | AC | 9 ms
6,784 KB |
testcase_17 | AC | 10 ms
5,632 KB |
testcase_18 | AC | 14 ms
8,192 KB |
testcase_19 | AC | 64 ms
58,112 KB |
testcase_20 | AC | 17 ms
12,672 KB |
ソースコード
#include <cstdio> #include <cstring> #include <iostream> #include <string> #include <cmath> #include <bitset> #include <vector> #include <map> #include <set> #include <queue> #include <deque> #include <algorithm> #include <complex> #include <unordered_map> #include <unordered_set> #include <random> #include <cassert> #include <fstream> #include <utility> #include <functional> #define popcount __builtin_popcount using namespace std; typedef long long int ll; typedef pair<int, int> P; const ll MOD=1e9+7; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< MOD >; namespace FastFourierTransform { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C &c) const { return C(x + c.x, y + c.y); } inline C operator-(const C &c) const { return C(x - c.x, y - c.y); } inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector< C > rts = { {0, 0}, {1, 0} }; vector< int > rev = {0, 1}; void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector< C > &a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) { int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector< int64_t > ret(need); for(int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; template< typename T > struct ArbitraryModConvolution { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) { if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < a.size(); i++) { fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15); } fft(fa, sz); vector< C > fb(sz); if(a == b) { fb = fa; } else { for(int i = 0; i < b.size(); i++) { fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector< T > ret(need); for(int i = 0; i < need; i++) { int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; modint f[200020], invf[200020]; void fac(int n){ f[0]=1; for(ll i=1; i<=n; i++) f[i]=f[i-1]*modint(i); invf[n]=modint(1)/f[n]; for(ll i=n-1; i>=0; i--) invf[i]=invf[i+1]*modint(i+1); } modint comb(int x, int y){ if(!(0<=y && y<=x)) return 0; return f[x]*invf[y]*invf[x-y]; } struct node{ node* nxt[27]; int cnt; bool exist; node(){ fill(nxt, nxt+27, nullptr); cnt=0; exist=0; } }; void add(node* t, string p){ node* t0=t; for(int i=0; i<p.size(); i++){ if(!t0->nxt[p[i]-'a']){ t0->nxt[p[i]-'a']=new node(); } t0=t0->nxt[p[i]-'a']; t0->cnt++; } t0->exist=1; } int n; vector<modint> a, b; void dfs(node* t, int d){ if(!t) return; int x=t->cnt; if(t->exist) a[x]+=modint(d); else a[x]-=1; for(int i=0; i<=26; i++){ if(!t->nxt[i]) continue; dfs(t->nxt[i], d+1); } } int main() { cin>>n; node t; int m=0; for(int i=0; i<n; i++){ string s; cin>>s; s+='a'+26; m=max(m, (int)s.size()); add(&t, s); } a.resize(n+1); fac(n); dfs(&t, 0); a[0]=0; for(int i=1; i<=n; i++) a[i]*=f[n-i]; b.resize(n+1); for(int i=0; i<=n; i++) b[i]=invf[i]; ArbitraryModConvolution<modint> fft; vector<modint> p=fft.multiply(a, b); for(int i=1; i<=n; i++){ cout<<p[i]*f[i]*invf[n-i]<<endl; } return 0; }