結果
問題 | No.780 オフ会 |
ユーザー | sakaki_tohru |
提出日時 | 2019-09-06 19:21:09 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 32,732 bytes |
コンパイル時間 | 3,225 ms |
コンパイル使用メモリ | 211,512 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-24 09:19:15 |
合計ジャッジ時間 | 4,128 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | WA | - |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | WA | - |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
ソースコード
#include<iostream>#include<algorithm>#include<string>#include<cstring>#include<sstream>#include<iomanip>#include<limits>#include<deque>#include<map>#include<list>#include<set>#include<unordered_set>#include<vector>#include<cmath>#include<cstdio>#include<memory>#include<bitset>#include<stack>#include<functional>#include<queue>#include<regex>#include<time.h>#include<type_traits>#include<cstdlib>#include<utility>#include<numeric>#include<iterator>#include<random>using namespace std;using ll = long long;using grid = vector<vector<char>>;/*メモ書きcout << setw(5) << setfill('0') << 〇〇 << endl;は5つ右寄せで0埋め出力*/constexpr ll MOD = 1000000007;//良く出てくるMODconstexpr ll INF = 1050000000;//intで使うでかい数constexpr ll LONGINF = 1050000000000000000;//longlongで使うでかい数struct all_init{//初期化のためだけの構造体//コンストラクタが呼ばれ、cin,cout高速化がされる//ついでに少数も出力できるようにしているall_init() {cout.tie(nullptr);cin.tie(nullptr);ios::sync_with_stdio(false);cout << fixed << setprecision(15);};}ALL_INIT;struct edge {//辺の重みを管理できるような構造体//フローで使う容量を意味するcapaも追加//コンストラクタによって簡単に値を入れられるようにしている//operatorは辺の重みでソート出来るようにしている(主に最小全域木用)int from, to;ll cost;ll capa;edge(int s, int d) : from(s), to(d) {cost = 0; capa = 0;}edge(int s, int d, ll w) : from(s), to(d), cost(w) { capa = 0; }edge(int s, int d, ll x, ll y) :from(s), to(d), cost(x), capa(y) { }bool operator < (const edge& x) const {return cost < x.cost;}};using graph = vector<vector<edge>>;using graph_bool = vector<vector<bool>>;#define CIN(vector_array_etc,n) for(int loop=0;loop<n;loop++){cin>>vector_array_etc[loop];}#define COUT(vector_array_etc,n) for(int LOOP=0;LOOP<n;LOOP++){cout<<vector_array_etc[LOOP]<<(LOOP == n-1 ?'\n':' ');}#define VC(Type_name) vector<Type_name>//1次元ならあまり意味ないかも#define SORT(vector_etc) sort(vector_etc.begin(),vector_etc.end())#define ALL(vec_etc) vec_etc.begin(),vec_etc.end()#define VCVC(Type_name) vector<vector<Type_name>>//2次元配列定義怠過ぎ問題#define WARSHALL vector<vector<ll>> g(n,vector<ll>(n,LONGINF))#define endl '\n'template<class T>bool chmax(T &a, const T &b) {if (a < b) {a = b;return true;}return false;}//aに最大値が入るtemplate<class T>bool chmin(T &a, const T &b) {if (b < a) {a = b;return true;}return false;}//aに最小値が入るtemplate<typename T>istream& operator >> (istream& is, vector<T>& Vec) {for (T& x : Vec) { is >> x; }return is;}template<typename V, typename H>void resize(vector<V>& vec, const H head) {vec.resize(head);}template<typename V, typename H, typename ... T>void resize(vector<V>& vec, const H& head, const T ... tail) {vec.resize(head);for (auto& v : vec) { resize(v, tail...); }}template<ll mod> struct ModInt {//けんちょんさん作modをとる整数//名前だけ変えた//これがないと二項係数が動かないので注意//普通に計算するとmodがとれるlong long val;constexpr ModInt(long long v = 0) noexcept : val(v % mod) {if (val < 0) v += mod;}constexpr int getmod() { return mod; }constexpr ModInt operator - () const noexcept {return val ? mod - val : 0;}constexpr ModInt operator + (const ModInt& r) const noexcept { return ModInt(*this) += r; }constexpr ModInt operator - (const ModInt& r) const noexcept { return ModInt(*this) -= r; }constexpr ModInt operator * (const ModInt& r) const noexcept { return ModInt(*this) *= r; }constexpr ModInt operator / (const ModInt& r) const noexcept { return ModInt(*this) /= r; }constexpr ModInt& operator += (const ModInt& r) noexcept {val += r.val;if (val >= mod) val -= mod;return *this;}constexpr ModInt& operator -= (const ModInt& r) noexcept {val -= r.val;if (val < 0) val += mod;return *this;}constexpr ModInt& operator *= (const ModInt& r) noexcept {val = val * r.val % mod;return *this;}constexpr ModInt& operator /= (const ModInt& r) noexcept {long long a = r.val, b = mod, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}val = val * u % mod;if (val < 0) val += mod;return *this;}constexpr bool operator == (const ModInt& r) const noexcept {return this->val == r.val;}constexpr bool operator != (const ModInt& r) const noexcept {return this->val != r.val;}friend ostream& operator << (ostream &os, const ModInt<mod>& x) noexcept {return os << x.val;}friend istream& operator >> (istream &is, ModInt<mod>& x) noexcept {return is >> x.val;}friend constexpr ModInt<mod> modpow(const ModInt<mod> &a, long long n) noexcept {if (n == 0) return 1;auto t = modpow(a, n / 2);t = t * t;if (n & 1) t = t * a;return t;}};template<class T> struct nCk {//けんちょんさん作二項係数ライブラリ//名前だけ変えた//nCk<ModInt<MOD>> c(200000);//↑のような感じで初期化vector<T> fact_, inv_, finv_;constexpr nCk() {}constexpr nCk(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {init(n);}constexpr void init(int n) noexcept {fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);int MOD = fact_[0].getmod();for (int i = 2; i < n; i++) {fact_[i] = fact_[i - 1] * i;inv_[i] = -inv_[MOD%i] * (MOD / i);finv_[i] = finv_[i - 1] * inv_[i];}}constexpr T com(int n, int k) const noexcept {if (n < k || n < 0 || k < 0) return 0;return fact_[n] * finv_[k] * finv_[n - k];}constexpr T fact(int n) const noexcept {if (n < 0) return 0;return fact_[n];}constexpr T inv(int n) const noexcept {if (n < 0) return 0;return inv_[n];}constexpr T finv(int n) const noexcept {if (n < 0) return 0;return finv_[n];}};int dx[] = { 0,1,-1, 0,1,-1, 1,-1 }; //i<4:4way i<8:8wayint dy[] = { 1,0, 0,-1,1,-1,-1, 1 };ll PowMod(ll n, ll k, ll mod) {//繰り返し2乗法//n^kをmodで求めるll r = 1;for (; k > 0; k >>= 1) {if (k & 1) {r = (r * n) % mod;}n = (n * n) % mod;}return r;}ll Gcd(ll a, ll b) {//最大公約数return b != 0 ? Gcd(b, a % b) : a;}ll Lcm(ll a, ll b) {//最小公倍数return a / Gcd(a, b) * b;}vector<string> Split(string s, string t) {//文字列を文字列で分割するvector<string> v;int p = s.find(t);if (p != s.npos) {v.push_back(s.substr(0, p));s = s.substr(p + t.size());}v.push_back(s);return v;}vector<int> Lis(const vector<int>& a) {//#define Index_of(as, x) distance(as.begin(), lower_bound(as.begin(), as.end(), x))#define Index_of(as, x) distance(as.begin(), upper_bound(as.begin(), as.end(), x))//upper_boundを使用すると、重複を許した最長増加部分列になる//-1倍した値を入れれば、最長減少部分列になるconst int n = a.size();vector<int> A(n, INF);vector<int> id(n);for (int i = 0; i < n; ++i) {id[i] = Index_of(A, a[i]);A[id[i]] = a[i];}int m = *max_element(id.begin(), id.end());vector<int> b(m + 1);for (int i = n - 1; i >= 0; --i)if (id[i] == m) b[m--] = a[i];return b;//最長部分列のどれか1つ}string LcsAlphabeticalMinOrder(string a, string b) {if (a.size() < b.size()) { swap(a, b); }int n = a.size(), m = b.size();vector<string> dp(m + 1);for (int i = 0; i < n; i++) {vector<string> to(m + 1);for (int j = 0; j < m; j++) {if (a[i] == b[j]) {to[j + 1] = dp[j] + a[i];}else {if (to[j].size() > dp[j + 1].size()) { to[j + 1] = to[j]; }else if (to[j].size() < dp[j + 1].size()) { to[j + 1] = dp[j + 1]; }else if (to[j] < dp[j + 1]) { to[j + 1] = to[j]; }else {to[j + 1] = dp[j + 1];}}}dp.swap(to);}return dp[m];}string Lcs(const string &s,const string &t) {int dp[3001][3001];int n = s.size();int m = t.size();for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}string ans = "";int i = s.size(), j = t.size();while (i > 0 && j > 0) {if (s[i - 1] == t[j - 1]) {ans += s[i - 1];i--;j--;}else if (dp[i - 1][j] >= dp[i][j - 1])i--;elsej--;}reverse(ans.begin(), ans.end());return ans;}vector<int> LcsInteger(const vector<int> &a, const vector<int> &b) {#define index_of(as, x) distance(as.begin(), lower_bound(as.begin(), as.end(), x))struct node {int value;node *next;node(int value, node *next) : value(value), next(next) { }};const int n = a.size(), m = b.size();map< int, vector<int> > M;for (int j = m - 1; j >= 0; --j)M[b[j]].push_back(j);vector<int> xs(n + 1, INF); xs[0] = -INF;vector< node* > link(n + 1);for (int i = 0; i < n; ++i) {if (M.count(a[i])) {vector<int> ys = M[a[i]];for (int j = 0; j < (int)ys.size(); ++j) {int k = index_of(xs, ys[j]);xs[k] = ys[j];link[k] = new node(b[ys[j]], link[k - 1]);}}}vector<int> c;int l = index_of(xs, INF - 1) - 1;for (node *p = link[l]; p; p = p->next)c.push_back(p->value);reverse(c.begin(), c.end());return c;}bool IsPrime(ll n) {//素数かどうかを判定//true 素数if (n < 2)return false;for (ll i = 2; i*i <= n; i++)if (!(n%i))return false;return true;}vector<bool> Eratosthenes(int n) {//エラトステネスの篩//返り値はbool//return res;として、返り値の型をvector<int>とすれば、//素数だけを取り出せるvector<int> res;vector<bool> Prime(n + 1, true);Prime[0] = Prime[1] = false;for (int i = 2; i*i <= n; i++) {if (Prime[i]) {for (int j = 2; i*j <= n; j++) {Prime[i*j] = false;}}}for (int i = 2; i <= n; i++) {if (Prime[i]) {res.emplace_back(i);}}return Prime;}ll MergeCount(vector<int> &a) {//反転数を数えるll count = 0;int n = a.size();if (n > 1) {vector<int> b(a.begin(), a.begin() + n / 2);vector<int> c(a.begin() + n / 2, a.end());count += MergeCount(b);count += MergeCount(c);for (int i = 0, j = 0, k = 0; i < n; ++i)if (k == c.size()) a[i] = b[j++];else if (j == b.size()) a[i] = c[k++];else if (b[j] <= c[k]) a[i] = b[j++];else { a[i] = c[k++]; count += n / 2 - j; }}return count;}bool WarshallFloyd(vector<vector<ll>> &c) {//ワーシャルフロイド法//全ての頂点間の最短距離を求める//falseの時、負の閉路検出int V = c.size();for (int i = 0; i < V; i++) {c[i][i] = 0;}for (int i = 0; i < V; i++) {for (int j = 0; j < V; j++) {for (int k = 0; k < V; k++) {if (c[j][k] > c[j][i] + c[i][k]) {c[j][k] = c[j][i] + c[i][k];}}}}for (int i = 0; i < V; i++) {if (c[i][i] < 0) {return false;}}return true;}vector<ll> Dijkstra(int i, vector<vector<edge>> graph) {//i:始点//graph:重み付きグラフint n = graph.size();vector<ll> d(n, LONGINF);d[i] = 0;priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<pair<ll, int>>> q;q.push(make_pair(0, i));//第一引数:コスト 第二引数:頂点while (!q.empty()) {pair<ll, int> p = q.top();q.pop();int v = p.second;if (d[v] < p.first) {continue;}for (auto x : graph[v]) {if (d[x.to] > d[v] + x.cost) {d[x.to] = d[v] + x.cost;q.push(make_pair(d[x.to], x.to));}}}return d;}bool BellmanFord(int start, int V, int E, vector<edge> Edge, vector<ll> &d) {//第一引数:start 始点//第二引数:V 頂点数//第三引数:E 辺の数//第四引数:Edge 辺の重み付きのグラフ//第五引数:d 各頂点への距離を入れる配列(答えが入る)//負の閉路検出でfalseが返り値resize(d, V);fill(d.begin(), d.end(), LONGINF);d[start] = 0;vector<bool> t(V, false);for (int i = 0; i < V - 1; i++) {for (int j = 0; j < E; j++) {edge e = Edge[j];if (d[e.from] == LONGINF) { continue; }if (d[e.to] > d[e.from] + e.cost) {d[e.to] = d[e.from] + e.cost;}}}for (int i = 0; i < V; i++) {for (int j = 0; j < E; j++) {edge e = Edge[j];if (d[e.from] == LONGINF) { continue; }if (d[e.to] > d[e.from] + e.cost) {d[e.to] = d[e.from] + e.cost;t[e.to] = true;/*if (i == V - 1) {//どこかに閉路があることを感知するreturn false;}*/}if (t[e.from]) {t[e.to] = true;}}}if (t[V - 1]) {//V-1は頂点番号n-1で、始点からn-1までに負の閉路を検出したい場合には、//コメントアウトを解除すること。return false;}return true;}bool TopologicalSort(const vector<vector<edge>> &g, vector<int> &ans) {//トポロジカルソート//trueが帰る時、トポロジカルソートが成功し、その結果がansに渡される//falseはトポロジカルソートの失敗int n = g.size(), k = 0;vector<int> ord(n), in(n);for (auto &es : g) {for (auto &e : es) {in[e.to]++;}}queue<int> q;for (int i = 0; i < n; ++i) {if (in[i] == 0) q.push(i);}while (!q.empty()) {int v = q.front();q.pop();ord[k++] = v;for (auto &e : g[v]) {if (--in[e.to] == 0) q.push(e.to);}}ans = ord;if (*max_element(in.begin(), in.end()) == 0) { return true; }return false;}vector<int> ArticulationNode(const vector<vector<edge>>& g) {//グラフの関節点を列挙する//最後の2行で、erace uniqueをしない場合は、その分割によって何個のグラフに分かれるかを判定できる(要チェック)。int n = g.size(), idx;vector<int> low(n), ord(n), art;function<void(int)> DFS = [&](int v) {low[v] = ord[v] = ++idx;for (auto& e : g[v]) {int w = e.to;if (ord[w] == 0) {DFS(w);low[v] = min(low[v], low[w]);if ((ord[v] == 1 && ord[w] != 2) || (ord[v] != 1 && low[w] >= ord[v])) {art.push_back(v);}}else {low[v] = min(low[v], ord[w]);}}};for (int u = 0; u < n; u++) {if (ord[u] == 0) {idx = 0;DFS(u);}}sort(art.begin(), art.end());//与えられた関節点をソートart.erase(unique(art.begin(), art.end()), art.end());//同じ関節点が複数存在することがある,return art;}vector<vector<edge>> ToRootTree(const vector<vector<edge>> &g, int r) {//根付き木へ変換する。//動作未確認。int n = g.size();vector<vector<edge>> G(n);vector<int> ord(n, -1);queue<int> q;q.push(r);int k = 0;while (q.size()) {int u = q.front(); q.pop();for (auto &e : g[u]) {int v = e.to;if (ord[v] == -1) {ord[v] = k; k++;q.push(v);G[u].emplace_back(e);}}}return G;}edge TreeDiameter(const vector<vector<edge>> &g) {//重み付きグラフ(木)を受け取り、その木の直径を求める//返り値はfrom,to,costを持った構造体int start = 0;//どの始点から始めても良いので、0から始めるstatic const auto bfs = [](const vector<vector<edge>> &g, int s, queue<int> &q, vector<ll> &dist) {while (!q.empty()) { q.pop(); }q.push(s);int n = g.size();dist.assign(n, LONGINF);dist[s] = 0;while (q.size()) {int u = q.front();q.pop();for (auto &e : g[u]) {int v = e.to;if (dist[v] == LONGINF) {dist[v] = dist[u] + e.cost;q.push(v);}}}return dist;};vector<ll> dist;queue<int> q;bfs(g, start, q, dist);int n = g.size(), u = -1, v = -1;for (int i = 0; i < n; i++)if (dist[i] != LONGINF && (u == -1 || dist[i] > dist[u])) u = i;bfs(g, u, q, dist);for (int i = 0; i < n; i++)if (dist[i] != LONGINF && (v == -1 || dist[i] > dist[v])) v = i;ll d = dist[v];if (u > v) swap(u, v);//念のため辞書順return edge(u, v, d);}void add_edge(vector<vector<edge>> &g, int a, int b, ll cost, ll cap) {//graph(vector<vector<edge>>)に対して無向辺として辺を貼る関数//graph以外には当然使えないので注意g[a].emplace_back(a, b, cost, cap);g[b].emplace_back(b, a, cost, cap);}pair<vector<int>, vector<edge>> bridge(const vector<vector<edge>>& g) {//グラフの橋となる辺を列挙する//戻り値のfirst:二重辺連結成分分解の番号となる//戻り値のsecond:橋となる辺を列挙したものconst int n = g.size();int idx = 0, s = 0, t = 0, k = 0;vector<int> ord(n, -1), onS(n), stk(n), roots(n), cmp(n);vector<edge> brdg;function<void(int, int)> dfs = [&](int v, int u) {ord[v] = idx++;stk[s++] = v;onS[v] = true;roots[t++] = v;for (auto& e : g[v]) {int w = e.to;if (ord[w] == -1) {dfs(w, v);}else if (u != w && onS[w]) {while (ord[roots[t - 1]] > ord[w]) { --t; }}}if (v == roots[t - 1]) {brdg.emplace_back(u, v, 0);while (1) {int w = stk[--s];onS[w] = false;cmp[w] = k;if (v == w) break;}--t;++k;}};for (int u = 0; u < n; u++) {if (ord[u] == -1) {dfs(u, n);brdg.pop_back();}}return make_pair(cmp, brdg);}class UnionFind {//satanicさん作 UnionFind//追加機能:forest_num//forestは、全体に含まれる木の数を表すprivate:std::vector<int> parent;std::vector<int> height;std::vector<int> m_size;int forest_num;public:UnionFind(int size_) : parent(size_), height(size_, 0), m_size(size_, 1) {forest_num = size_;for (int i = 0; i < size_; ++i) parent[i] = i;}void init(int size_) {parent.resize(size_);height.resize(size_, 0);m_size.resize(size_, 1);forest_num = size_;for (int i = 0; i < size_; ++i) parent[i] = i;}int find(int x) {if (parent[x] == x) return x;return parent[x] = find(parent[x]);}void unite(int x, int y) {x = find(x);y = find(y);if (x == y) return;int t = size(x) + size(y);m_size[x] = m_size[y] = t;if (height[x] < height[y]) parent[x] = y;else parent[y] = x;if (height[x] == height[y]) ++height[x];forest_num--;}bool same(int x, int y) {return find(x) == find(y);}int size(int x) {if (parent[x] == x) return m_size[x];return size(parent[x] = find(parent[x]));}int forest() {return forest_num;}};class Dinic {//最大流を求めるprivate:int n, s, t;vector<int> level, prog, que;vector<vector<ll>> cap, flow;vector<vector<int>> g;ll inf;public:Dinic(const vector<vector<edge>> &graph) :n(graph.size()),cap(n, vector<ll>(n)),//flow(n, vector<ll>(n)),g(n, vector<int>()),inf(LONGINF) {for (int i = 0; i < n; i++) {for (auto &e : graph[i]) {int u = e.from, v = e.to;ll c = e.capa;cap[u][v] += c;cap[v][u] += c;flow[v][u] += c;g[u].push_back(v);g[v].push_back(u);}}}inline ll residue(int u, int v) { return cap[u][v] - flow[u][v]; }ll solve(int s_, int t_) {this->t = t_, this->s = s_;que.resize(n + 1);ll res = 0;while (levelize()) {prog.assign(n, 0);res += augment(s, inf);}return res;}bool levelize() {int l = 0, r = 0;level.assign(n, -1);level[s] = 0;que[r++] = s;while (l != r) {int v = que[l++];if (v == t) break;for (const int &d : g[v])if (level[d] == -1 && residue(v, d) != 0) {level[d] = level[v] + 1;que[r++] = d;}}return level[t] != -1;}ll augment(int v, ll lim) {ll res = 0;if (v == t) return lim;for (int &i = prog[v]; i < (int)g[v].size(); i++) {const int &d = g[v][i];if (residue(v, d) == 0 || level[v] >= level[d]) continue;const ll aug = augment(d, min(lim, residue(v, d)));flow[v][d] += aug;flow[d][v] -= aug;res += aug;lim -= aug;if (lim == 0) break;}return res;}};class MinimumCostFlow {private:using Flow = ll;using Cost = ll;struct Edge {int d;Flow c, f;Cost w;int r, is_r;Edge(int d_, Flow c_, Flow f_, Cost w_, int r_, bool is_r_): d(d_), c(c_), f(f_), w(w_), r(r_), is_r(is_r_) {}};int n;vector<vector<Edge>> g;public:MinimumCostFlow(int n_) : n(n_), g(vector<vector<Edge>>(n_)) {}void add_edge(int src, int dst, Flow cap, Cost cost) { // 有向辺int rsrc = g[dst].size();int rdst = g[src].size();g[src].emplace_back(dst, cap, 0, cost, rsrc, false);g[dst].emplace_back(src, cap, cap, -cost, rdst, true);}Cost solve(int s, int t, Flow f) {Cost res = 0;vector<Cost> h(n + 10), dist(n);vector<int> prevv(n + 10), preve(n + 10);using pcv = pair<Cost, int>;priority_queue<pcv, vector<pcv>, greater<pcv> > q;fill(h.begin(), h.end(), 0);while (f > 0) {fill(dist.begin(), dist.end(), LONGINF);dist[s] = 0;q.emplace(0, s);while (q.size()) {Cost cd;int v;tie(cd, v) = q.top();q.pop();if (dist[v] < cd) continue;for (int i = 0; i < (int)(g[v].size()); ++i) {Edge &e = g[v][i];if (residue(e) == 0) continue;if (dist[e.d] + h[e.d] > cd + h[v] + e.w) {dist[e.d] = dist[v] + e.w + h[v] - h[e.d];prevv[e.d] = v;preve[e.d] = i;q.emplace(dist[e.d], e.d);}}}if (dist[t] == LONGINF) return -1; // 経路が見つからなかった// s-t 間を最短路に沿って目一杯流すfor (int i = 0; i < n; ++i) h[i] += dist[i];Flow d = f;for (int v = t; v != s; v = prevv[v]) {chmin(d, residue(g[prevv[v]][preve[v]]));}f -= d;res += d * h[t];for (int v = t; v != s; v = prevv[v]) {Edge &e = g[prevv[v]][preve[v]];e.f += d;g[v][e.r].f -= d;}}return res;}Flow residue(const Edge &e) { return e.c - e.f; }// 流量を表示void show() {for (int i = 0; i < n; ++i) {for (int j = 0; j < (int)(g[i].size()); ++j) {Edge &e = g[i][j];if (e.is_r) continue;cout << i << "->" << e.d << "(flow:" << e.f << ")" << endl;}}}};class BipartiteMatching {private:int V;vector<int> match;vector<bool> used;vector<vector<int>> g;vector<pair<int, int>> match_pair;bool dfs(int v) {used[v] = true;for (int i = 0; i < (int)g[v].size(); i++) {int u = g[v][i];int w = match[u];if (w < 0 || !used[w] && dfs(w)) {match[v] = u;match[u] = v;match_pair.emplace_back(make_pair(u, v));return true;}}return false;}public:BipartiteMatching(int n) {V = n;resize(match, n);resize(used, n);resize(g, n);}void add_edge(int u, int v) {g[u].emplace_back(v);g[v].emplace_back(u);}int MatchingSolve() {int res = 0;fill(match.begin(), match.end(), -1);for (int v = 0; v < V; v++) {if (match[v] < 0) {fill(used.begin(), used.end(), false);if (dfs(v)) {res++;}}}return res;}vector<pair<int, int>> get_pair() {for (auto x : match_pair) {cout << x.first << " " << x.second << endl;}return match_pair;}};class Lca {private:int n;int log2_n;vector<vector<int>> parent;vector<int> depth;void dfs(const vector<vector<edge>> &g, int v, int p, int d) {parent[0][v] = p;depth[v] = d;for (auto &e : g[v]) {if (e.to != p) { dfs(g, e.to, v, d + 1); }}}public:Lca(const vector<vector<edge>> &g, int root) {n = g.size();log2_n = (int)log2(n) + 1;resize(parent, log2_n, n);resize(depth, n);dfs(g, root, -1, 0);for (int k = 0; k + 1 < log2_n; k++) {for (int v = 0; v < (int)g.size(); v++) {if (parent[k][v] < 0) {parent[k + 1][v] = -1;}else {parent[k + 1][v] = parent[k][parent[k][v]];}}}}int get_lca(int u, int v) {if (depth[u] > depth[v]) { swap(u, v); }//u≦vfor (int k = 0; k < log2_n; k++) {if ((depth[v] - depth[u]) >> k & 1) {v = parent[k][v];}}if (u == v) { return u; }for (int k = log2_n - 1; k >= 0; k--) {if (parent[k][u] != parent[k][v]) {u = parent[k][u];v = parent[k][v];}}return parent[0][u];}int get_depth(int v) {return depth[v];}};class DAG {//有向グラフをゴニョゴニョするクラス//機能:longest_path 有向パスの最長経路(含まれる辺の数)を求めるprivate:int n;vector<vector<edge>> g;vector<int> visited;vector<int> dp;vector<int> topological;int dfs(int s) {if ((int)g[s].size() == 0) {return 1;}if (dp[s] > 0) { return dp[s]; }int mx = 1;for (auto j : g[s]) {if (visited[j.to]==0) {visited[j.to] = 1;int l = 0;l = dfs(j.to);chmax(mx, l);}else {chmax(mx, dp[j.to]);}}return dp[s] = mx + 1;}public:DAG(const vector<vector<edge>> &f) {g = f;n = f.size();resize(visited, n + 1);fill(visited.begin(), visited.end(), 0);resize(dp, n + 1);fill(dp.begin(), dp.end(), -1);resize(topological, n);}DAG(int x) {n = x;resize(g, n);resize(visited, n + 1);fill(visited.begin(), visited.end(), 0);resize(dp, n + 1);fill(dp.begin(), dp.end(), -1);}void add_edge(int a,int b) {g[a].emplace_back(a, b);}void add_edge(int a, int b, ll c) {g[a].emplace_back(a, b, c);}void add_edge(int a, int b, ll c, ll d) {g[a].emplace_back(a, b, c, d);}int longest_path() {int mx = -1;for (int i = 0; i < n; i++) {int h = 0;if (visited[i]==0) {h = dfs(i);chmax(mx, h);}}return mx - 1;}bool TopologicalSort() {//trueが帰る時、トポロジカルソートが成功//falseはトポロジカルソートの失敗int k = 0;vector<int> ord(n), in(n);for (auto &es : g) {for (auto &e : es) {in[e.to]++;}}queue<int> q;for (int i = 0; i < n; ++i) {if (in[i] == 0) q.push(i);}while (!q.empty()) {int v = q.front();q.pop();ord[k++] = v;for (auto &e : g[v]) {if (--in[e.to] == 0) { q.push(e.to); }}}topological = ord;if (*max_element(in.begin(), in.end()) == 0) { return true; }return false;}};class RangeMinimumUpdateQuerySegmentTree {//区間最小値を求めることが出来るセグメント木//query:指定した半開区間においての最小値を求める//update:指定した半開区間の値を変更する//RangeUpdateQueryも兼ねることが出来る(1つの要素の最小値はその要素のみ)private:int n;ll inf = (1LL << 31) - 1;//2^31-1vector<ll> dat, lazy;void eval(int len, int k) {if (lazy[k] == inf) return;if (k * 2 + 1 < n * 2 - 1) {lazy[2 * k + 1] = lazy[k];lazy[2 * k + 2] = lazy[k];}dat[k] = lazy[k];lazy[k] = inf;}public:RangeMinimumUpdateQuerySegmentTree() {}RangeMinimumUpdateQuerySegmentTree(int n_) {n = 1; while (n < n_) n *= 2;dat.assign(n * 2, inf);lazy.assign(n * 2, inf);}// [a, b)ll update(int a, int b, ll x, int k, int l, int r) {eval(r - l, k);if (b <= l || r <= a) return dat[k];if (a <= l && r <= b) {lazy[k] = x;return lazy[k];}return dat[k] = min(update(a, b, x, 2 * k + 1, l, (l + r) / 2), update(a, b, x, 2 * k + 2, (l + r) / 2, r));}ll update(int a, int b, ll x) { return update(a, b, x, 0, 0, n); }// [a, b)ll query(int a, int b, int k, int l, int r) {eval(r - l, k);if (b <= l || r <= a) return inf;if (a <= l && r <= b) return dat[k];ll vl = query(a, b, 2 * k + 1, l, (l + r) / 2);ll vr = query(a, b, 2 * k + 2, (l + r) / 2, r);return min(vl, vr);}ll query(int a, int b) { return query(a, b, 0, 0, n); }};class RangeSumQuerySegmentTree {//区間和を求めることが出来るセグメント木//update:指定した要素に加算//query:指定した半開区間の合計を返す//0-indexed//半開区間private:struct Node {Node *left, *right;ll v;Node() : left(nullptr), right(nullptr), v(0) {}};Node *root;ll n, n0;ll query(ll a, ll b, Node *n, ll l, ll r) {if (a <= l && r <= b) {return n->v;}if (r <= a || b <= l) {return 0;}ll lv = n->left ? query(a, b, n->left, l, (l + r) >> 1) : 0;ll rv = n->right ? query(a, b, n->right, (l + r) >> 1, r) : 0;return (lv + rv) % MOD;}public:RangeSumQuerySegmentTree(ll n) : n(n) {n0 = 1;while (n0 < n) n0 <<= 1;root = new Node();}~RangeSumQuerySegmentTree() {delete root; root = nullptr;}void update(ll k, ll x) {Node *n = root;ll l = 0, r = n0;n->v = (n->v + x) % MOD;while (r - l > 1) {ll m = (l + r) >> 1;if (k < m) {if (!n->left) n->left = new Node();n = n->left;r = m;}else {if (!n->right) n->right = new Node();n = n->right;l = m;}n->v = (n->v + x) % MOD;}}ll query(ll a, ll b) {return query(a, b, root, 0, n0);}ll lquery(ll b) {return query(0, b, root, 0, n0);}ll rquery(ll a) {return query(a, n0, root, 0, n0);}};class KDimensionalTree{//2Dの点がある区間内にあるかどうかを判定し、その点を列挙する//makeKDTreeで前計算//findが実際に探す部分public:struct Node {int location;int p, l, r;Node() {}};struct Point {int id,x, y;Point() {}Point(int i, int a, int b) {id = i;x = a;y = b;}bool operator<(const Point &p)const {return id < p.id;}void print() {cout << id << endl;}};static const ll NIL = -1;static bool lessX(const Point &p1, const Point &p2) { return p1.x < p2.x; }static bool lessY(const Point &p1, const Point &p2) { return p1.y < p2.y; }int N;vector<Point> P;vector<Node> T;int np;KDimensionalTree() {}KDimensionalTree(int N) { init(N); }void init(int n) {N = n;P.clear();T.clear();resize(P, N);resize(T, N);np = 0;}int makeKDTree(int l, int r, int depth) {if (l >= r) { return NIL; }int mid = (l + r) / 2;int t = np++;if (depth & 1) {sort(P.begin() + l, P.begin() + r, lessY);}else {sort(P.begin() + l, P.begin() + r, lessX);}T[t].location = mid;T[t].l = makeKDTree(l, mid, depth + 1);T[t].r = makeKDTree(mid + 1, r, depth + 1);return t;}void find(int v, int sx, int tx, int sy, int ty, int depth, vector<Point> &ans) {int x = P[T[v].location].x;int y = P[T[v].location].y;if (sx <= x && x <= tx && sy <= y && y <= ty) {ans.push_back(P[T[v].location]);}if (depth % 2 == 0) {if (T[v].l != NIL) {if (sx <= x) find(T[v].l, sx, tx, sy, ty, depth + 1, ans);}if (T[v].r != NIL) {if (x <= tx) find(T[v].r, sx, tx, sy, ty, depth + 1, ans);}}else {if (T[v].l != NIL) {if (sy <= y) find(T[v].l, sx, tx, sy, ty, depth + 1, ans);}if (T[v].r != NIL) {if (y <= ty) find(T[v].r, sx, tx, sy, ty, depth + 1, ans);}}}void add_point(int i, int x, int y) {P[i].id = i;P[i].x = x;P[i].y = y;T[i].l = T[i].r = T[i].p = NIL;}};class RangeAddQuerySegmentTree {//区間に足し算をする機能と、ある要素を参照する機能があるセグメント木private:int n;vector<ll> data;public:RangeAddQuerySegmentTree() {}RangeAddQuerySegmentTree(int N) {n = N;resize(data, n + 1);fill(data.begin(),data.end(), 0);}void add(int i, ll x) {while (i) {data[i] += x;i -= (i&-i);}}void add(int i, int j, ll x) {add(j, x);add(i - 1, -x);}ll get(int i) {ll res = 0;while (i <= n) {res += data[i];i += (i&-i);}return res;}};class RangeSumAddQuerySegmentTree {//update:ある区間に対して足し算を行う機能//query:ある区間に対して合計値を求める機能private:vector<ll> bit0, bit1;int n;ll sum(const vector<ll> &b, int i) {ll s = 0;while (i > 0) {s += b[i];i -= (i&-i);}return s;}void add(vector<ll> &b, int i, ll v) {while (i <= n) {b[i] += v;i += (i&-i);}}public:RangeSumAddQuerySegmentTree() {}RangeSumAddQuerySegmentTree(int N) {n = N;resize(bit0, n + 1);resize(bit1, n + 1);fill(bit0.begin(), bit0.end(), 0);fill(bit1.begin(), bit1.end(), 0);}void update(int l, int r, ll x) {add(bit0, l, -x * (l - 1));add(bit1, l, x);add(bit0, r + 1, x*r);add(bit1, r + 1, -x);}ll query(int l, int r) {ll res = 0;res += sum(bit0, r) + sum(bit1, r)*r;res -= sum(bit0, l - 1) + sum(bit1, l - 1)*(l - 1);return res;}};int main() {int a, b; cin >> a >> b;a++;if (a > b) {cout << "NO" << endl;cout << a - b << endl;}else {cout << "YES" << endl;cout << 0 << endl;}return 0;}