結果
問題 | No.875 Range Mindex Query |
ユーザー | もりを |
提出日時 | 2019-09-06 21:28:44 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 217 ms / 2,000 ms |
コード長 | 12,433 bytes |
コンパイル時間 | 2,141 ms |
コンパイル使用メモリ | 177,200 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-24 16:47:12 |
合計ジャッジ時間 | 4,462 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 3 ms
5,376 KB |
testcase_11 | AC | 163 ms
5,376 KB |
testcase_12 | AC | 132 ms
5,376 KB |
testcase_13 | AC | 110 ms
5,376 KB |
testcase_14 | AC | 107 ms
5,376 KB |
testcase_15 | AC | 150 ms
5,376 KB |
testcase_16 | AC | 202 ms
5,376 KB |
testcase_17 | AC | 217 ms
5,376 KB |
testcase_18 | AC | 209 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define Int long long //#define int long long //TEMPLATE START---------------8<---------------8<---------------8<---------------8<---------------// typedef long long ll; typedef long double ld; typedef pair<int,int> pii; typedef pair<ll,ll> pll; typedef vector<int> vi; typedef vector<ll> vl; typedef vector<string> vst; typedef vector<bool> vb; typedef vector<ld> vld; typedef vector<pii> vpii; typedef vector<pll> vpll; typedef vector<vector<int> > vvi; const int INF = (0x7FFFFFFFL); const ll INFF = (0x7FFFFFFFFFFFFFFFL); const string ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const int MOD = 1e9 + 7; const int MODD = 998244353; const string alphabet = "abcdefghijklmnopqrstuvwxyz"; const double PI = acos(-1.0); const double EPS = 1e-9; const string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; int dx[9] = { 1, 0, -1, 0, 1, -1, -1, 1, 0 }; int dy[9] = { 0, 1, 0, -1, -1, -1, 1, 1, 0 }; #define ln '\n' #define scnaf scanf #define sacnf scanf #define sancf scanf #define SS(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template<typename T> void MACRO_VAR_Scan(T& t){cin >> t;}template<typename First, typename...Rest> void MACRO_VAR_Scan(First& first, Rest&...rest){cin >> first;MACRO_VAR_Scan(rest...);} #define SV(type,c,n) vector<type> c(n);for(auto& i:c)cin >> i; #define SVV(type,c,n,m) vector<vector<type>> c(n,vector<type>(m));for(auto& r:c)for(auto& i:r)cin >> i; template<class T,class U>ostream &operator<<(ostream &o,const pair<T,U>&j){o<<"{"<<j.first<<", "<<j.second<<"}";return o;} template<class T,class U>ostream &operator<<(ostream &o,const map<T,U>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;} template<class T>ostream &operator<<(ostream &o,const set<T>&j){o<<"{";for(auto t=j.begin();t!=j.end();++t)o<<(t!=j.begin()?", ":"")<<*t;o<<"}";return o;} template<class T>ostream &operator<<(ostream &o,const vector<T>&j){o<<"{";for(int i=0;i<(int)j.size();++i)o<<(i>0?", ":"")<<j[i];o<<"}";return o;} inline int print(void){cout << endl; return 0;} template<class Head> int print(Head&& head){cout << head;print();return 0;} template<class Head,class... Tail> int print(Head&& head,Tail&&... tail){cout<<head<<" ";print(forward<Tail>(tail)...);return 0;} inline int debug(void){cerr << endl; return 0;} template<class Head> int debug(Head&& head){cerr << head;debug();return 0;} template<class Head,class... Tail> int debug(Head&& head,Tail&&... tail){cerr<<head<<" ";debug(forward<Tail>(tail)...);return 0;} template<typename T> void PA(T &a){int ASIZE=sizeof(a)/sizeof(a[0]);for(int ii=0;ii<ASIZE;++ii){cout<<a[ii]<<" \n"[ii==ASIZE-1];}} template<typename T> void PV(T &v){int VSIZE=v.size();for(int ii=0;ii<VSIZE;++ii){cout<<v[ii]<<" \n"[ii==VSIZE-1];}} #define ER(x) cerr << #x << " = " << (x) << endl; #define ERV(v) {cerr << #v << " : ";for(const auto& xxx : v){cerr << xxx << " ";}cerr << "\n";} inline int YES(bool x){cout<<((x)?"YES":"NO")<<endl;return 0;} inline int Yes(bool x){cout<<((x)?"Yes":"No")<<endl;return 0;} inline int yes(bool x){cout<<((x)?"yes":"no")<<endl;return 0;} inline int yES(bool x){cout<<((x)?"yES":"nO")<<endl;return 0;} inline int Yay(bool x){cout<<((x)?"Yay!":":(")<<endl;return 0;} template<typename A,typename B> void sankou(bool x,A a,B b){cout<<((x)?(a):(b))<<endl;} #define _overload3(_1,_2,_3,name,...) name #define _REP(i,n) REPI(i,0,n) #define REPI(i,a,b) for(ll i=ll(a);i<ll(b);++i) #define REP(...) _overload3(__VA_ARGS__,REPI,_REP,)(__VA_ARGS__) #define _RREP(i,n) RREPI(i,n,0) #define RREPI(i,a,b) for(ll i=ll(a);i>=ll(b);--i) #define RREP(...) _overload3(__VA_ARGS__,RREPI,_RREP,)(__VA_ARGS__) #define EACH(e,v) for(auto& e : v) #define PERM(v) sort((v).begin(),(v).end());for(bool c##p=1;c##p;c##p=next_permutation((v).begin(),(v).end())) #define ADD(a,b) a=(a+ll(b))%MOD #define MUL(a,b) a=(a*ll(b))%MOD inline ll MOP(ll x,ll n,ll m=MOD){ll r=1;while(n>0){if(n&1)(r*=x)%=m;(x*=x)%=m;n>>=1;}return r;} inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}inline ll lcm(ll a,ll b){return a*b/gcd(a,b);}inline ll POW(ll a,ll b){ll c=1ll;do{if(b&1)c*=1ll*a;a*=1ll*a;}while(b>>=1);return c;} template<typename T,typename A,typename B> inline bool between(T x,A a,B b) {return ((a<=x)&&(x<b));}template<class T> inline T sqr(T x){return x*x;} template<typename A,typename B> inline bool chmax(A &a,const B &b){if(a<b){a=b;return 1;}return 0;} template<typename A,typename B> inline bool chmin(A &a,const B &b){if(a>b){a=b;return 1;}return 0;} #define tmax(x,y,z) max((x),max((y),(z))) #define tmin(x,y,z) min((x),min((y),(z))) #define PB push_back #define MP make_pair #define MT make_tuple #define all(v) (v).begin(),(v).end() #define rall(v) (v).rbegin(),(v).rend() #define SORT(v) sort((v).begin(),(v).end()) #define RSORT(v) sort((v).rbegin(),(v).rend()) #define EXIST(s,e) (find((s).begin(),(s).end(),(e))!=(s).end()) #define EXISTST(s,c) (((s).find(c))!=string::npos) #define POSL(x,val) (lower_bound(x.begin(),x.end(),val)-x.begin()) #define POSU(x,val) (upper_bound(x.begin(),x.end(),val)-x.begin()) #define GEQ(x,val) (int)(x).size() - POSL((x),(val)) #define GREATER(x,val) (int)(x).size() - POSU((x),(val)) #define LEQ(x,val) POSU((x),(val)) #define LESS(x,val) POSL((x),(val)) #define SZV(a) int((a).size()) #define SZA(a) sizeof(a)/sizeof(a[0]) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) #define MEMINF(a) memset(a,0x3f,sizeof(a)) #define FILL(a,b) memset(a,b,sizeof(a)) #define UNIQUE(v) sort((v).begin(),(v).end());(v).erase(unique((v).begin(),(v).end()),(v).end()) struct abracadabra{ abracadabra(){ cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); cerr << fixed << setprecision(5); }; } ABRACADABRA; //TEMPLATE END---------------8<---------------8<---------------8<---------------8<---------------// /* ・セグメント木 > build O(N) > query, update O(logN) [備考] 結合律, 単位元を持つ二項演算を, 任意の区間に関してlogNで行うデータ構造 [使用例] SegmentTree<int> seg_sum(N, [](int a, int b){ return a+b; }, 0 ); // 区間和 SegmentTree<int> seg_min(N, [](int a, int b){ return min(a,b); }, INF); // 区間min seg_min.set(k,x); // 要素kに値xを設定 seg_min.build(); // 上のセグメントに値を設定 seg_min.update(k,x); // 要素kを値xに変更 seg_min.add(k,x); // 要素kに値xを加算 seg_min.query(l,r); // 区間[l,r)に対する二項演算の結果を返す */ template<typename T> struct SegmentTree { using F = function< T(T,T) >; vector< T > seg; int size; // データの数以上の最小の2冪, 最下段のデータの個数 const F func; const T M1; SegmentTree(int n, const F f, const T &M) : func(f), M1(M) { size = 1; while (size < n) size *= 2; seg.resize(2 * size - 1, M1); } void set(int k, T x) { seg[k + size - 1] = x; } void build() { for (int i = size - 2; i >= 0; --i) { // iの子は, (2*i+1, 2*i+2) seg[i] = func(seg[2*i+1], seg[2*i+2]); } } void update(int k, T x) { // kをseg内の添字に対応させる <- (size - 1)を足す k += size - 1; seg[k] = x; while (k > 0) { k = (k - 1) / 2; seg[k] = func(seg[2*k+1], seg[2*k+2]); } } void add(int k, T x) { // kをseg内の添字に対応させる <- (size - 1)を足す k += size - 1; seg[k] += x; while (k > 0) { k = (k - 1) / 2; seg[k] = func(seg[2*k+1], seg[2*k+2]); } } T query(int a, int b, int k = 0, int l = 0, int r = -1) { if (r < 0) r = size; if (r <= a || l >= b) return M1; if (l >= a && r <= b) return seg[k]; T f_l = query(a, b, 2*k+1, l, (l+r)/2); T f_r = query(a, b, 2*k+2, (l+r)/2, r); return func(f_l, f_r); } void debug() { for (int i = 0; i < 2 * size - 1; ++i) { cerr << seg[i] << " \n"[i==2*size-2]; } } }; /* ・遅延評価セグメント木 > query, update O(logN) [引数] LazySegmentTree<Monoid, OperatorMonoid> seg(sz, f, g, h, d1, d0, v, p); > sz : 要素数 > f : 要素と要素をマージする関数 > g : 要素に作用素を作用させる関数 > h : 作用素と作用素をマージする関数 > d1 : 要素のモノイド > d0 : 作用素のモノイド > v : 初期化用の配列 > p : 区間に対する操作が要素数に比例して変化する場合 ( p(a, b) = g(a, a, ..., a) [aはb個] ) [備考] 以下の3つの条件を満たすときに使える 1. g(f(a, b), c) = f(g(a, c), g(b, c)) ( 1'. g(f(a, b), p(c, d)) = f(g(a, p(c, d / 2)), g(b, p(c, d / 2))) ) 2. g(g(a, b), c) = g(a, h(b, c)) 3. g(a, d0) = a [典型例] > 区間加算 -> 区間和 LazySegmentTree<ll> seg(N, plus<ll>(), plus<ll>(), plus<ll>(), 0, 0, vl(N,0), multiplies<ll>()); > 区間加算 -> 区間最小 LazySegmentTree<ll> seg(N, [](ll a,ll b){return min(a,b);}, plus<ll>(), plus<ll>(), INFF, 0); > 区間更新 -> 区間和 LazySegmentTree<ll> seg(N, plus<ll>(), [](ll a,ll b){return b;}, [](ll a,ll b){return b;}, 0, INFF, vl(N,0), multiplies<ll>()); > 区間更新 -> 区間最小 LazySegmentTree<ll> seg(N, [](ll a,ll b){return min(a,b);}, [](ll a,ll b){return b;}, [](ll a,ll b){return b;}, INFF, INFF); [使用例] seg.update(l, r, x); // 半開区間[l, r)に作用素xを作用 seg.query(l, r); // 半開区間[l, r)に対する演算の結果 seg[k]; // k番目の要素を取得 */ template <typename Monoid, typename OperatorMonoid = Monoid> struct LazySegmentTree { typedef function< Monoid(Monoid, Monoid) > F; typedef function< Monoid(Monoid, OperatorMonoid) > G; typedef function< OperatorMonoid(OperatorMonoid, OperatorMonoid) > H; typedef function< OperatorMonoid(OperatorMonoid, int) > P; int sz; F f; G g; H h; P p; Monoid d1; OperatorMonoid d0; vector< Monoid > dat; vector< OperatorMonoid > laz; LazySegmentTree(int n, F f, G g, H h, Monoid d1, OperatorMonoid d0, vector< Monoid > v = vector< Monoid >(), P p = [] (OperatorMonoid a, int b) { return a; }) : f(f), g(g), h(h), d1(d1), d0(d0), p(p) { sz = 1; while (sz < n) sz <<= 1; dat.assign(2 * sz - 1, d1); laz.assign(2 * sz - 1, d0); if (n == (int)v.size()) build(n, v); } void build(int n, vector<Monoid> &v) { for (int i = 0; i < n; i++) dat[i + sz - 1] = v[i]; for (int i = sz - 2; i >= 0; i--) dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]); } inline void eval(int len, int k) { if (laz[k] == d0) return; if (k * 2 + 1 < sz * 2 - 1) { laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]); laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]); } dat[k] = g(dat[k], p(laz[k], len)); laz[k] = d0; } Monoid update(int a, int b, OperatorMonoid x, int k, int l, int r) { eval(r - l, k); if(r <= a || b <= l) return dat[k]; if(a <= l && r <= b) { laz[k] = h(laz[k], x); return g(dat[k], p(laz[k], r - l)); } return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2), update(a, b, x, k * 2 + 2, (l + r) / 2, r)); } Monoid update(int a, int b, OperatorMonoid x) { return update(a, b, x, 0, 0, sz); } Monoid query(int a, int b, int k, int l, int r) { eval(r - l, k); if (r <= a || b <= l) return d1; if (a <= l && r <= b) return dat[k]; Monoid vl = query(a, b, k * 2 + 1, l, (l + r) / 2); Monoid vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return f(vl, vr); } Monoid query(int a, int b) { return query(a, b, 0, 0, sz); } Monoid operator[](const int &k) { return query(k, k + 1); } }; signed main() { SS(int, N, Q); SV(int, A, N); SegmentTree<int> seg(N, [](int a, int b){ return min(a,b); }, INF); REP(i, N) { --A[i]; seg.update(i, A[i]); } vector<int> rev(N); REP(i, N) { rev[A[i]] = i; } while (Q--) { int q; cin >> q; int l, r; cin >> l >> r; if (q == 1) { --l, --r; int a = seg.query(l, l + 1); int b = seg.query(r, r + 1); swap(rev[a], rev[b]); seg.add(l, b - a); seg.add(r, a - b); } else { --l; int t = (seg.query(l, r)); print(rev[t] + 1); } } }