結果
| 問題 |
No.875 Range Mindex Query
|
| ユーザー |
jell
|
| 提出日時 | 2019-09-07 12:24:17 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 16,573 bytes |
| コンパイル時間 | 1,591 ms |
| コンパイル使用メモリ | 130,608 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-06-26 08:07:11 |
| 合計ジャッジ時間 | 3,086 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 2 WA * 16 |
ソースコード
#ifdef stderr_path
#define LOCAL
#define _GLIBCXX_DEBUG
#endif
#pragma GCC optimize("Ofast")
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#define debug_stream std::cerr
#define iostream_untie true
#define __precision__ 10
#define rep(i, n) for(int i = 0; i < int(n); ++i)
#define all(v) begin(v), end(v)
#define rall(v) rbegin(v), rend(v)
#define __odd(n) ((n) & 1)
#define __even(n) (__odd(n) ^ 1)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(int32_t(n))
#define __clz64(n) __builtin_clzll(int64_t(n))
#define __ctz32(n) __builtin_ctz(int32_t(n))
#define __ctz64(n) __builtin_ctzll(int64_t(n))
using i64 = int_fast64_t;
using pii = std::pair<int, int>;
using pll = std::pair<int_fast64_t, int_fast64_t>;
template <class T>
using heap = std::priority_queue<T>;
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
constexpr T inf = std::numeric_limits<T>::max() / T(2) - T(1123456);
namespace execution
{
std::chrono::system_clock::time_point start_time, end_time;
void print_elapsed_time()
{
end_time = std::chrono::system_clock::now();
std::cerr << "\n----- Exec time : ";
std::cerr << std::chrono::duration_cast<std::chrono::milliseconds>(
end_time - start_time)
.count();
std::cerr << " ms -----\n\n";
}
struct setupper
{
setupper()
{
if(iostream_untie)
{
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
}
std::cout << std::fixed << std::setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr))
{
std::cerr << std::fixed << std::setprecision(__precision__);
}
else
fclose(stderr);
#endif
#ifdef stdout_path
if(not freopen(stdout_path, "w", stdout))
{
freopen("CON", "w", stdout);
std::cerr << "Failed to open the stdout file\n\n";
}
std::cout << "";
#endif
#ifdef stdin_path
if(not freopen(stdin_path, "r", stdin))
{
freopen("CON", "r", stdin);
std::cerr << "Failed to open the stdin file\n\n";
}
#endif
#ifdef LOCAL
atexit(print_elapsed_time);
start_time = std::chrono::system_clock::now();
#endif
}
} __setupper;
} // namespace execution
struct myclock_t
{
std::chrono::system_clock::time_point built_pt, last_pt;
int built_ln, last_ln;
std::string built_func, last_func;
bool is_built;
myclock_t() : is_built(false)
{}
void build(int crt_ln, const std::string &crt_func)
{
is_built = true;
last_pt = built_pt = std::chrono::system_clock::now();
last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
}
void set(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
last_pt = std::chrono::system_clock::now();
last_ln = crt_ln, last_func = crt_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
<< "myclock_t::set failed (yet to be built!)\n";
}
}
void get(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
std::chrono::system_clock::time_point crt_pt(
std::chrono::system_clock::now());
int64_t diff =
std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt -
last_pt)
.count();
debug_stream << diff << " ms elapsed from"
<< " [ " << last_ln << " : " << last_func << " ]";
if(last_ln == built_ln) debug_stream << " (when built)";
debug_stream << " to"
<< " [ " << crt_ln << " : " << crt_func << " ]"
<< "\n";
last_pt = built_pt, last_ln = built_ln, last_func = built_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
<< "myclock_t::get failed (yet to be built!)\n";
}
}
};
#ifdef LOCAL
myclock_t myclock;
#define build_clock() myclock.build(__LINE__, __func__)
#define set_clock() myclock.set(__LINE__, __func__)
#define get_clock() myclock.get(__LINE__, __func__)
#else
#define build_clock() 42
#define set_clock() 42
#define get_clock() 42
#endif
namespace std
{
template <class RAitr>
void rsort(RAitr __first, RAitr __last)
{
sort(__first, __last, greater<>());
}
template <class T>
size_t hash_combine(size_t seed, T const &key)
{
return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2));
}
template <class T, class U>
struct hash<pair<T, U>>
{
size_t operator()(pair<T, U> const &pr) const
{
return hash_combine(hash_combine(0, pr.first), pr.second);
}
};
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1>
struct tuple_hash_calc
{
static size_t apply(size_t seed, tuple_t const &t)
{
return hash_combine(
tuple_hash_calc<tuple_t, index - 1>::apply(seed, t),
get<index>(t));
}
};
template <class tuple_t>
struct tuple_hash_calc<tuple_t, 0>
{
static size_t apply(size_t seed, tuple_t const &t)
{
return hash_combine(seed, get<0>(t));
}
};
template <class... T>
struct hash<tuple<T...>>
{
size_t operator()(tuple<T...> const &t) const
{
return tuple_hash_calc<tuple<T...>>::apply(0, t);
}
};
template <class T, class U>
istream &operator>>(std::istream &s, pair<T, U> &p)
{
return s >> p.first >> p.second;
}
template <class T, class U>
ostream &operator<<(std::ostream &s, const pair<T, U> p)
{
return s << p.first << " " << p.second;
}
template <class T>
istream &operator>>(istream &s, vector<T> &v)
{
for(T &e : v)
{
s >> e;
}
return s;
}
template <class T>
ostream &operator<<(ostream &s, const vector<T> &v)
{
for(size_t i = 0; i < v.size(); ++i)
{
s << (i ? " " : "") << v[i];
}
return s;
}
template <class tuple_t, size_t index>
struct tupleos
{
static ostream &apply(ostream &s, const tuple_t &t)
{
tupleos<tuple_t, index - 1>::apply(s, t);
return s << " " << get<index>(t);
}
};
template <class tuple_t>
struct tupleos<tuple_t, 0>
{
static ostream &apply(ostream &s, const tuple_t &t)
{
return s << get<0>(t);
}
};
template <class... T>
ostream &operator<<(ostream &s, const tuple<T...> &t)
{
return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(
s, t);
}
template <>
ostream &operator<<(ostream &s, const tuple<> &t)
{
return s;
}
} // namespace std
#ifdef LOCAL
#define dump(...) \
debug_stream << " [ " << __LINE__ << " : " << __FUNCTION__ << " ] " \
<< #__VA_ARGS__ << " : ", \
dump_func(__VA_ARGS__)
#else
#define dump(...) 42
#endif
template <class T>
void dump_func(const T &x)
{
debug_stream << x << '\n';
}
template <class T, class... Rest>
void dump_func(const T &x, Rest... rest)
{
debug_stream << x << ", ";
dump_func(rest...);
}
template <class T>
void write(const T &x)
{
std::cout << x << '\n';
}
template <class T, class... Rest>
void write(const T &x, Rest... rest)
{
std::cout << x << ' ';
write(rest...);
}
void writeln()
{}
template <class T, class... Rest>
void writeln(const T &x, Rest... rest)
{
std::cout << x << '\n';
writeln(rest...);
}
#define esc(...) writeln(__VA_ARGS__), exit(0)
template <class P>
void read_range(P __first, P __second)
{
for(P i = __first; i != __second; ++i)
std::cin >> *i;
}
template <class T>
bool chmin(T &x, const T &y)
{
return x > y ? x = y, true : false;
}
template <class T>
bool chmax(T &x, const T &y)
{
return x < y ? x = y, true : false;
}
template <class T>
constexpr T minf(const T &x, const T &y)
{
return std::min(x, y);
}
template <class T>
constexpr T maxf(const T &x, const T &y)
{
return std::max(x, y);
}
template <class int_t, class F>
int_t bin(int_t ok, int_t ng, const F &f)
{
while(std::abs(ok - ng) > 1)
{
int_t mid = (ok + ng) / 2;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class A, size_t N, class T>
void init(A (&array)[N], const T &val)
{
std::fill((T *)array, (T *)(array + N), val);
}
template <class A, size_t N>
void init(A (&array)[N])
{
memset(array, 0, sizeof(array));
}
void for_subset(int_fast64_t s, const std::function<void(int_fast64_t)> &fn)
{
int_fast64_t t = s;
do
{
fn(t);
} while((--t &= s) != s);
}
namespace math
{
template <class int_t>
constexpr int_t gcd(int_t x, int_t y)
{
x = x > 0 ? x : -x, y = y > 0 ? y : -y;
while(y)
y ^= x ^= y ^= x %= y;
return x;
}
template <class int_t>
constexpr int_t lcm(int_t x, int_t y)
{
return x ? x / gcd(x, y) * y : 0;
}
template <class int_t>
constexpr std::tuple<int_t, int_t, int_t> ext_gcd(int_t a, int_t b)
{
int_t sgn_a = a >= 0 ? 1 : (a = -a, 0),
sgn_b = b >= 0 ? 1 : (b = -b, 0);
int_t p = 1, q = 0, r = 0, s = 1;
while(b)
{
int_t t = a / b;
r ^= p ^= r ^= p -= t * r;
s ^= q ^= s ^= q -= t * s;
b ^= a ^= b ^= a %= b;
}
return std::tuple<int_t, int_t, int_t>(a, sgn_a ? p : -p,
sgn_b ? q : -q);
}
template <class int_t>
constexpr std::pair<int_t, int_t> mod_comp(int_t k, int_t m, int_t l,
int_t n)
{
assert(m > 0 and n > 0);
int_t g, x, y;
std::tie(g, x, y) = ext_gcd(m, n);
k += ((k %= m) < 0) * m, l += ((l %= n) < 0) * n;
int_t s = k / g, t = l / g, r = k % g;
if(r != l % g) return std::pair<int_t, int_t>(-1, -1);
int_t lcm = m / g * n;
return std::pair<int_t, int_t>(
(m * x % lcm * t % lcm + n * y % lcm * s % lcm + r + lcm * 2) % lcm,
lcm);
}
} // namespace math
/* The main code follows. */
using namespace std;
using namespace math;
signed main()
{
void solve();
void input();
void init();
int t = 1;
// std::cin >> t;
while(t--)
{
init();
input();
solve();
}
}
template <class Monoid, class act_t>
class Segment_tree
{
std::vector<Monoid> data;
public:
const std::size_t n, N;
using opr_t = std::function<Monoid(const Monoid &, const Monoid &)>;
using update_opr_t = std::function<void(Monoid &, const act_t &)>;
const opr_t opr;
const update_opr_t update_opr;
const Monoid identity;
Segment_tree(std::size_t _n, const Monoid &_identity, const opr_t &_opr,
const update_opr_t &_update_opr)
: n(_n), N(_n > 1 ? 1 << (32 - __builtin_clz(_n - 1)) : 1), opr(_opr),
update_opr(_update_opr), identity(_identity)
{
data.assign(N << 1, identity);
}
Monoid operator[](std::size_t i)
{
return data[i + N];
}
template <class P>
void copy(P s, P t)
{
for(std::size_t i = N; s != t; ++s, ++i)
data[i] = *s;
for(std::size_t i = N - 1; i; --i)
data[i] = opr(data[left(i)], data[right(i)]);
}
template <class A>
void copy(const A &v)
{
copy(begin(v), end(v));
}
void init(const Monoid &x)
{
for(std::size_t i = 0; i < N; ++i)
data[i + N] = x;
for(std::size_t i = N - 1; i; --i)
data[i] = opr(data[left(i)], data[right(i)]);
}
void update(std::size_t idx, const act_t &actor)
{
update_opr(data[idx += N], actor);
while(idx >>= 1)
data[idx] = opr(data[idx * 2], data[idx * 2 + 1]);
}
// operation result of range [a, b).
Monoid query(std::size_t a, std::size_t b) const
{
Monoid lft = identity, rgt = identity;
a += N, b += N;
while(a < b)
{
if(a & 1) lft = opr(lft, data[a++]);
if(b & 1) rgt = opr(data[--b], rgt);
a >>= 1, b >>= 1;
}
return opr(lft, rgt);
}
// maximum r where range [idx, r) meets the condition.
std::size_t right_bound(std::size_t idx,
const std::function<bool(const Monoid &)> &f)
{
assert(idx < n);
std::size_t ret = idx;
Monoid now = identity;
right_bound(idx, f, 1, 0, N, now, ret);
return std::min(ret, n);
}
// minimum l where range [l, idx) meets the condition.
std::size_t left_bound(std::size_t idx,
const std::function<bool(const Monoid &)> &f)
{
assert(idx <= n);
std::size_t ret = idx;
Monoid now = identity;
left_bound(idx, f, 1, 0, N, now, ret);
return ret;
}
private:
constexpr std::size_t left(const std::size_t k)
{
return k * 2;
}
constexpr std::size_t right(const std::size_t k)
{
return left(k) ^ 1;
}
constexpr std::size_t parent(const std::size_t k)
{
return k >> 1;
}
constexpr std::size_t sibling(const std::size_t k)
{
return k ^ 1;
}
void right_bound(std::size_t idx,
const std::function<bool(const Monoid &)> &f,
std::size_t k, std::size_t l, std::size_t r, Monoid &now,
std::size_t &pos)
{
if(idx >= r || l > pos) return;
const std::size_t mid = (l + r) / 2;
if(l >= idx)
{
Monoid nxt = opr(now, data[k]);
if(f(nxt))
{
pos = r;
now = nxt;
return;
}
}
if(r - l > 1)
{
right_bound(idx, f, left(k), l, mid, now, pos);
right_bound(idx, f, right(k), mid, r, now, pos);
}
}
void left_bound(std::size_t idx,
const std::function<bool(const Monoid &)> &f, std::size_t k,
std::size_t l, std::size_t r, Monoid &now, std::size_t &pos)
{
if(idx <= l || r < pos) return;
const std::size_t mid = (l + r) / 2;
if(r <= idx)
{
Monoid nxt = opr(data[k], now);
if(f(nxt))
{
pos = l;
now = nxt;
return;
}
}
if(r - l > 1)
{
left_bound(idx, f, right(k), mid, r, now, pos);
left_bound(idx, f, left(k), l, mid, now, pos);
}
}
};
int n;
int p[1<<17];
int qry;
void init()
{}
void input()
{
std::cin >> n >> qry;
read_range(p,p+n);
}
void solve()
{
p[n]=n+1;
Segment_tree<int,int> seg(n,n,
[&](int x,int y)
{
if(p[x]<p[y]) return x;
return y;
},
[](int &x,int y)
{
x=y;
});
// initialize
{
vector<int> ini(n);
iota(all(ini),0);
seg.copy(ini);
}
while(qry--)
{
int typ,l,r;
std::cin >> typ >> l >> r; l--;
if(typ==1)
{
r--;
int ll=seg[l];
int rr=seg[r];
swap(p[l],p[r]);
seg.update(l,rr);
seg.update(r,ll);
}
else
{
std::cout << seg.query(l,r)+1 << "\n";
}
}
}
jell