結果
問題 | No.3046 yukicoderの過去問 |
ユーザー | beet |
提出日時 | 2019-09-08 18:05:23 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 401 ms / 2,000 ms |
コード長 | 9,407 bytes |
コンパイル時間 | 4,467 ms |
コンパイル使用メモリ | 265,696 KB |
実行使用メモリ | 67,456 KB |
最終ジャッジ日時 | 2024-06-27 15:05:52 |
合計ジャッジ時間 | 6,946 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,812 KB |
testcase_02 | AC | 3 ms
6,944 KB |
testcase_03 | AC | 389 ms
66,936 KB |
testcase_04 | AC | 3 ms
6,944 KB |
testcase_05 | AC | 389 ms
67,064 KB |
testcase_06 | AC | 396 ms
67,456 KB |
testcase_07 | AC | 401 ms
67,392 KB |
testcase_08 | AC | 398 ms
67,324 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; using Int = long long; template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;} //BEGIN CUT HERE template<typename T> struct FormalPowerSeries{ using Poly = vector<T>; using Conv = function<Poly(Poly, Poly)>; Conv conv; FormalPowerSeries(Conv conv):conv(conv){} Poly add(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,T(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i]; return cs; } Poly sub(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,T(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i]; return cs; } Poly mul(Poly as,Poly bs){ return conv(as,bs); } // F(0) must not be 0 Poly inv(Poly as,int deg){ assert(as[0]!=T(0)); Poly rs({T(1)/as[0]}); int sz=1; while(sz<deg){ sz<<=1; Poly ts(min(sz,(int)as.size())); for(int i=0;i<(int)ts.size();i++) ts[i]=as[i]; rs=sub(add(rs,rs),mul(mul(rs,rs),ts)); rs.resize(sz); } return rs; } // Only for divisable Poly div(Poly as,Poly bs){ reverse(as.begin(),as.end()); reverse(bs.begin(),bs.end()); while(bs.back()==T(0)){ assert(as.back()==T(0)); as.pop_back(); bs.pop_back(); } reverse(as.begin(),as.end()); reverse(bs.begin(),bs.end()); int need=as.size()-bs.size()+1; return mul(as,inv(bs,need)); } // as[0] must be 1 Poly sqrt(Poly as,int deg){ assert(as[0]==T(1)); int sz=1; T inv2=T(1)/T(2); Poly ss({T(1)}); while(sz<deg){ sz<<=1; Poly ts(min(sz,(int)as.size())); for(int i=0;i<(int)ts.size();i++) ts[i]=as[i]; ss=add(ss,mul(ts,inv(ss,sz))); ss.resize(sz); for(T &x:ss) x*=inv2; } return ss; } }; //END CUT HERE template<typename T,T MOD = 1000000007> struct Mint{ static constexpr T mod = MOD; T v; Mint():v(0){} Mint(signed v):v(v){} Mint(long long t){v=t%MOD;if(v<0) v+=MOD;} Mint pow(long long k){ Mint res(1),tmp(v); while(k){ if(k&1) res*=tmp; tmp*=tmp; k>>=1; } return res; } static Mint add_identity(){return Mint(0);} static Mint mul_identity(){return Mint(1);} Mint inv(){return pow(MOD-2);} Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;} Mint& operator/=(Mint a){return (*this)*=a.inv();} Mint operator+(Mint a) const{return Mint(v)+=a;}; Mint operator-(Mint a) const{return Mint(v)-=a;}; Mint operator*(Mint a) const{return Mint(v)*=a;}; Mint operator/(Mint a) const{return Mint(v)/=a;}; Mint operator-() const{return v?Mint(MOD-v):Mint(v);} bool operator==(const Mint a)const{return v==a.v;} bool operator!=(const Mint a)const{return v!=a.v;} bool operator <(const Mint a)const{return v <a.v;} }; template<typename T,T MOD> constexpr T Mint<T, MOD>::mod; template<typename T,T MOD> ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;} constexpr int bmds(int x){ const int v[] = {1012924417, 924844033, 998244353, 897581057, 645922817}; return v[x]; } constexpr int brts(int x){ const int v[] = {5, 5, 3, 3, 3}; return v[x]; } template<int X> struct NTT{ static constexpr int md = bmds(X); static constexpr int rt = brts(X); using M = Mint<int, md>; vector< vector<M> > rts,rrts; void ensure_base(int n){ if((int)rts.size()>=n) return; rts.resize(n);rrts.resize(n); for(int i=1;i<n;i<<=1){ if(!rts[i].empty()) continue; M w=M(rt).pow((md-1)/(i<<1)); M rw=w.inv(); rts[i].resize(i);rrts[i].resize(i); rts[i][0]=M(1);rrts[i][0]=M(1); for(int k=1;k<i;k++){ rts[i][k]=rts[i][k-1]*w; rrts[i][k]=rrts[i][k-1]*rw; } } } void ntt(vector<M> &as,bool f,int n=-1){ if(n==-1) n=as.size(); assert((n&(n-1))==0); ensure_base(n); for(int i=0,j=1;j+1<n;j++){ for(int k=n>>1;k>(i^=k);k>>=1); if(i>j) swap(as[i],as[j]); } for(int i=1;i<n;i<<=1){ for(int j=0;j<n;j+=i*2){ for(int k=0;k<i;k++){ M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]); as[i+j+k]=as[j+k]-z; as[j+k]+=z; } } } if(f){ M tmp=M(n).inv(); for(int i=0;i<n;i++) as[i]*=tmp; } } vector<M> multiply(vector<M> as,vector<M> bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz<need) sz<<=1; as.resize(sz,M(0)); bs.resize(sz,M(0)); ntt(as,0);ntt(bs,0); for(int i=0;i<sz;i++) as[i]*=bs[i]; ntt(as,1); as.resize(need); return as; } vector<int> multiply(vector<int> as,vector<int> bs){ vector<M> am(as.size()),bm(bs.size()); for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]); for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]); vector<M> cm=multiply(am,bm); vector<int> cs(cm.size()); for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v; return cs; } }; template<int X> constexpr int NTT<X>::md; template<int X> constexpr int NTT<X>::rt; struct ArbitraryModConvolution{ using ll = long long; static NTT<0> ntt0; static NTT<1> ntt1; static NTT<2> ntt2; static constexpr int pow(int a,int b,int md){ int res=1; a=a%md; while(b){ if(b&1) res=(ll)res*a%md; a=(ll)a*a%md; b>>=1; } return res; } static constexpr int inv(int x,int md){ return pow(x,md-2,md); } inline void garner(int &c0,int c1,int c2,int m01,int MOD){ static constexpr int r01=inv(ntt0.md,ntt1.md); static constexpr int r02=inv(ntt0.md,ntt2.md); static constexpr int r12=inv(ntt1.md,ntt2.md); c1=(ll)(c1-c0)*r01%ntt1.md; if(c1<0) c1+=ntt1.md; c2=(ll)(c2-c0)*r02%ntt2.md; c2=(ll)(c2-c1)*r12%ntt2.md; if(c2<0) c2+=ntt2.md; c0+=(ll)c1*ntt0.md%MOD; if(c0>=MOD) c0-=MOD; c0+=(ll)c2*m01%MOD; if(c0>=MOD) c0-=MOD; } inline void garner(vector< vector<int> > &cs,int MOD){ int m01 =(ll)ntt0.md*ntt1.md%MOD; int sz=cs[0].size(); for(int i=0;i<sz;i++) garner(cs[0][i],cs[1][i],cs[2][i],m01,MOD); } vector<int> multiply(vector<int> as,vector<int> bs,int MOD){ vector< vector<int> > cs(3); cs[0]=ntt0.multiply(as,bs); cs[1]=ntt1.multiply(as,bs); cs[2]=ntt2.multiply(as,bs); size_t sz=as.size()+bs.size()-1; for(auto& v:cs) v.resize(sz); garner(cs,MOD); return cs[0]; } template<typename T,T MOD> decltype(auto) multiply(vector< Mint<T, MOD> > am, vector< Mint<T, MOD> > bm){ using M = Mint<T, MOD>; vector<int> as(am.size()),bs(bm.size()); for(int i=0;i<(int)as.size();i++) as[i]=am[i].v; for(int i=0;i<(int)bs.size();i++) bs[i]=bm[i].v; vector<int> cs=multiply(as,bs,MOD); vector<M> cm(cs.size()); for(int i=0;i<(int)cm.size();i++) cm[i]=M(cs[i]); return cm; } }; NTT<0> ArbitraryModConvolution::ntt0; NTT<1> ArbitraryModConvolution::ntt1; NTT<2> ArbitraryModConvolution::ntt2; //INSERT ABOVE HERE signed HAPPYQUERY_E(){ cin.tie(0); ios::sync_with_stdio(0); int n,m,q; cin>>n>>m>>q; vector<int> ls(q),rs(q); for(int i=0;i<q;i++) cin>>ls[i]>>rs[i],ls[i]--; vector<int> as(n); for(int i=0;i<n;i++) cin>>as[i]; if(as==vector<int>(n,0)){ for(int i=0;i<m;i++){ if(i) cout<<" "; cout<<0; } cout<<endl; return 0; } vector<int> cs(n-m+1,0); for(int l:ls) cs[l]++; NTT<0> ntt; using M = NTT<0>::M; auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);}; FormalPowerSeries<M> FPS(conv); vector<M> ps(as.size()),qs(cs.size()); for(int i=0;i<(int)ps.size();i++) ps[i]=M(as[i]); for(int i=0;i<(int)qs.size();i++) qs[i]=M(cs[i]); auto bs=FPS.div(ps,qs); for(int i=0;i<m;i++){ if(i) cout<<" "; cout<<bs[i]; } cout<<endl; return 0; } /* verified on 2019/09/08 https://www.hackerrank.com/contests/happy-query-contest/challenges/array-restoring */ signed CFR250_E(){ cin.tie(0); ios::sync_with_stdio(0); int n,m; cin>>n>>m; vector<int> cs(n); for(int i=0;i<n;i++) cin>>cs[i]; NTT<2> ntt; using M = NTT<2>::M; auto conv=[&](auto as,auto bs){return ntt.multiply(as,bs);}; FormalPowerSeries<M> FPS(conv); const int deg=1<<18; vector<M> as(deg,0); as[0]=M(1); for(int c:cs) as[c]-=M(4); auto bs=FPS.sqrt(as,deg); bs[0]+=M(1); vector<M> vs({2}); auto ans=FPS.mul(vs,FPS.inv(bs,deg)); for(int i=1;i<=m;i++) cout<<ans[i]<<"\n"; cout<<flush; return 0; } /* verified on 2019/09/08 https://codeforces.com/contest/438/problem/E */ signed YUKI_3046(){ cin.tie(0); ios::sync_with_stdio(0); int k,n; cin>>k>>n; vector<int> xs(n); for(int i=0;i<n;i++) cin>>xs[i]; using M = Mint<int>; ArbitraryModConvolution arb; auto conv=[&](auto as,auto bs){return arb.multiply(as,bs);}; FormalPowerSeries<M> FPS(conv); const int sz=1<<17; vector<M> bs(sz,M(0)); bs[0]=1; for(int x:xs) bs[x]-=M(1); cout<<FPS.inv(bs,k+1)[k]<<endl; return 0; } /* verified on 2019/06/29 https://yukicoder.me/problems/no/3046 */ signed main(){ //HAPPYQUERY_E(); //CFR250_E(); YUKI_3046(); return 0; }