結果
| 問題 |
No.650 行列木クエリ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-09 23:11:06 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 174 ms / 2,000 ms |
| コード長 | 11,829 bytes |
| コンパイル時間 | 3,314 ms |
| コンパイル使用メモリ | 215,064 KB |
| 最終ジャッジ日時 | 2025-01-07 17:32:17 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
ソースコード
#include <bits/stdc++.h>
#define LLI long long int
#define FOR(v, a, b) for(LLI v = (a); v < (b); ++v)
#define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(LLI v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define popcount __builtin_popcount
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(...) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
struct Init{
Init(){
cin.tie(0);
ios::sync_with_stdio(false);
}
}init;
template <uint32_t M> class ModInt{
public:
uint64_t val;
ModInt(): val(0){}
ModInt(int64_t n){
if(n >= M) val = n % M;
else if(n < 0) val = n % M + M;
else val = n;
}
inline constexpr ModInt operator+(const ModInt &a) const {return ModInt((val+a.val)%M);}
inline constexpr ModInt operator-(const ModInt &a) const {return ModInt((val-a.val+M)%M);}
inline constexpr ModInt operator*(const ModInt &a) const {return ModInt((val*a.val)%M);}
inline constexpr ModInt operator/(const ModInt &a) const {return ModInt((val*a.inv().val)%M);}
inline constexpr ModInt& operator=(const ModInt &a){val = a.val; return *this;}
inline constexpr ModInt& operator+=(const ModInt &a){if((val += a.val) >= M) val -= M; return *this;}
inline constexpr ModInt& operator-=(const ModInt &a){if(val < a.val) val += M; val -= a.val; return *this;}
inline constexpr ModInt& operator*=(const ModInt &a){(val *= a.val) %= M; return *this;}
inline constexpr ModInt& operator/=(const ModInt &a){(val *= a.inv().val) %= M; return *this;}
inline constexpr bool operator==(const ModInt &a) const {return val==a.val;}
inline constexpr bool operator!=(const ModInt &a) const {return val!=a.val;}
inline constexpr static ModInt power(LLI n, LLI p){
ModInt ret = 1, e = n;
for(; p; e *= e, p >>= 1) if(p&1) ret *= e;
return ret;
}
inline constexpr ModInt power(LLI p) const{return power(val,p);}
inline constexpr ModInt inv() const{
int64_t a = val, b = M, u = 1, v = 0;
while(b){
int64_t t = a/b;
a -= t*b; swap(a,b);
u -= t*v; swap(u,v);
}
u %= M;
if(u < 0) u += M;
return u;
}
};
template <uint32_t M> ModInt<M> operator-(const ModInt<M> &a){return M-a.val;}
template <uint32_t M> ModInt<M> operator+(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)+b.val);}
template <uint32_t M> ModInt<M> operator-(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)-b.val);}
template <uint32_t M> ModInt<M> operator*(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)*b.val);}
template <uint32_t M> ModInt<M> operator/(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)/b.val);}
template <uint32_t M> istream& operator>>(istream &is, ModInt<M> &a){is >> a.val; return is;}
template <uint32_t M> ostream& operator<<(ostream &os, const ModInt<M> &a){ os << a.val; return os;}
template <typename T, int N> struct SquareMatrix{
array<array<T,N>,N> matrix;
SquareMatrix(): matrix(){}
SquareMatrix(const T &val){
REP(i,N) matrix[i].fill(val);
}
SquareMatrix(const SquareMatrix<T,N> &) = default;
SquareMatrix(SquareMatrix<T,N> &&) = default;
SquareMatrix(initializer_list<initializer_list<T>> list){
int i = 0;
ITR(it1,list){
int j = 0;
ITR(it2,*it1){
matrix[i][j] = *it2;
++j;
}
++i;
}
}
bool operator==(const SquareMatrix<T,N> &val) const {
return matrix == val.matrix;
}
bool operator!=(const SquareMatrix<T,N> &val) const {
return !(*this == val);
}
SquareMatrix& operator=(const SquareMatrix &) = default;
SquareMatrix& operator+=(const SquareMatrix &val){
REP(i,N) REP(j,N) matrix[i][j] = matrix[i][j] + val[i][j];
return *this;
}
SquareMatrix& operator-=(const SquareMatrix &val){
REP(i,N) REP(j,N) matrix[i][j] = matrix[i][j] - val[i][j];
return *this;
}
SquareMatrix& operator*=(const SquareMatrix &val){
array<array<T,N>,N> temp = {};
REP(i,N) REP(j,N) REP(k,N) temp[i][j] = temp[i][j] + matrix[i][k] * val[k][j];
swap(matrix, temp);
return *this;
}
inline const auto& operator[](size_t i) const {return matrix[i];}
inline auto& operator[](size_t i){return matrix[i];}
inline int size() const {return N;}
static SquareMatrix<T,N> make_unit(){
SquareMatrix<T,N> ret;
REP(i,N) ret[i][i] = 1;
return ret;
}
SquareMatrix<T,N> transpose() const {
SquareMatrix<T,N> ret;
REP(i,N) REP(j,N) ret[i][j] = matrix[j][i];
return ret;
}
T determinant(){
int s = 0;
REP(i,N){
if(matrix[i][i] == 0){
FOR(j,i+1,N){
if(matrix[j][i] != 0){
matrix[i].swap(matrix[j]);
(s += 1) %= 2;
break;
}
if(j == N-1) return 0;
}
}
FOR(j,i+1,N){
T t = matrix[j][i] / matrix[i][i];
REP(k,N) matrix[j][k] -= matrix[i][k] * t;
}
}
T ret = s ? -1 : 1;
REP(i,N) ret *= matrix[i][i];
return ret;
}
void show(int w = 10) const {
REP(i,N){
cerr << (i==0 ? "⎛" : (i==N-1 ? "⎝" : "⎜"));
REP(j,N) cerr << setw(w) << matrix[i][j] << " ";
cerr << (i==0 ? "⎞" : (i==N-1 ? "⎠" : "⎟"));
cerr << endl;
}
}
};
template <typename T, int N> SquareMatrix<T,N> operator+(const SquareMatrix<T,N> &a, const SquareMatrix<T,N> &b){auto ret = a; ret += b; return ret;}
template <typename T, int N> SquareMatrix<T,N> operator-(const SquareMatrix<T,N> &a, const SquareMatrix<T,N> &b){auto ret = a; ret -= b; return ret;}
template <typename T, int N> SquareMatrix<T,N> operator*(const SquareMatrix<T,N> &a, const SquareMatrix<T,N> &b){auto ret = a; ret *= b; return ret;}
template <typename T, int N> SquareMatrix<T,N> power(SquareMatrix<T,N> a, uint64_t p){
if(p == 0) return SquareMatrix<T,N>::make_unit();
if(p == 1) return a;
SquareMatrix<T,N> temp = power(a, p/2);
auto ret = temp * temp;
if(p%2) ret *= a;
return ret;
}
template <typename T, int N> vector<T> operator*(const SquareMatrix<T,N> &a, const vector<T> &b){
vector<T> ret(N);
REP(i,N){
REP(j,N){
ret[i] += a[i][j] * b[j];
}
}
return ret;
}
template <typename T, int N> vector<T> operator*(const vector<T> &b, const SquareMatrix<T,N> &a){
vector<T> ret(N);
REP(i,N){
REP(j,N){
ret[j] += b[i] * a[i][j];
}
}
return ret;
}
template <typename T> class SegmentTreeRangeProductQuery{
private:
int size;
vector<T> vec;
T e;
inline T aux(int x, int y, int i, int l, int r){
if(r<=x || y<=l) return e;
else if(x<=l && r<=y) return vec[i];
else return aux(x,y,i*2+1,l,(l+r)/2) * aux(x,y,i*2+2,(l+r)/2,r);
};
public:
SegmentTreeRangeProductQuery(int n, const T &e): e(e){
size = 1;
while(size < n) size *= 2;
size = size*2-1;
vec = vector<T>(size, e);
}
inline void update(int i, const T &x){
int j = i+(size+1)/2-1;
vec[j] = x;
--j;
while(j>=0){
vec[j/2] = vec[(j/2)*2+1] * vec[(j/2)*2+2];
(j /= 2) -= 1;
}
}
inline T at(int i){
return vec[(size+1)/2 + i - 1];
}
inline T get(int x, int y){ // [x,y)
return aux(x,y,0,0,(size+1)/2);
}
};
template <typename Cost = int> class Edge{
public:
int from,to;
Cost cost;
Edge() {}
Edge(int to, Cost cost): to(to), cost(cost){}
Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}
Edge rev() const {return Edge(to,from,cost);}
friend ostream& operator<<(ostream &os, const Edge &e){
os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")";
return os;
}
};
template <typename T> using Graph = vector<vector<Edge<T>>>;
template <typename T> using Tree = vector<vector<Edge<T>>>;
template <typename C, typename T> void add_edge(C &g, int from, int to, T w){
g[from].push_back(Edge<T>(from, to, w));
}
template <typename C, typename T> void add_undirected(C &g, int a, int b, T w){
g[a].push_back(Edge<T>(a, b, w));
g[b].push_back(Edge<T>(b, a, w));
}
template <typename T> class HLDecomposition{
Tree<T> tree;
int n;
vector<int> sub, par, head, id, rid, next, end;
int dfs_sub(int cur, int p){
par[cur] = p;
int t = 0;
for(auto &e : tree[cur]){
if(e.to == p) continue;
sub[cur] += dfs_sub(e.to, cur);
if(sub[e.to] > t){
t = sub[e.to];
next[cur] = e.to;
swap(e, tree[cur][0]);
}
}
return sub[cur];
}
void dfs_build(int cur, int &i){
id[cur] = i;
rid[i] = cur;
++i;
for(auto &e : tree[cur]){
if(e.to == par[cur]) continue;
head[e.to] = (e.to == tree[cur][0].to ? head[cur] : e.to);
dfs_build(e.to, i);
}
end[cur] = i;
}
public:
HLDecomposition(const Tree<T> &tree):
tree(tree), n(tree.size()), sub(n,1), par(n,-1), head(n), id(n), rid(n), next(n,-1), end(n, -1){
dfs_sub(0, -1);
int i=0;
dfs_build(0, i);
}
void path_query_vertex(int x, int y, const function<void(int,int)> &f){
while(1){
if(id[x] > id[y]) swap(x, y);
f(max(id[head[y]], id[x]), id[y]+1);
if(head[x] == head[y]) return;
y = par[head[y]];
}
}
void path_query_edge(int x, int y, const function<void(int,int)> &f){
while(1){
if(id[x] > id[y]) swap(x, y);
if(head[x] == head[y]){
if(x != y) f(id[x]+1, id[y]+1);
return;
}
f(id[head[y]], id[y]+1);
y = par[head[y]];
}
}
void subtree_query_edge(int x, const function<void(int,int)> &f){
f(id[x]+1, end[x]);
}
int get_edge_id(int u, int v){ // 辺に対応するid
if(par[u] == v){
return id[u];
}else if(par[v] == u){
return id[v];
}
return -1;
}
int parent(int x){return par[x];};
};
const LLI mod = 1e9+7;
using mint = ModInt<mod>;
using M = SquareMatrix<mint,2>;
int main(){
int n; cin >> n;
Tree<int> tree(n);
vector<Edge<int>> edges(n-1);
REP(i,n-1){
int a,b; cin >> a >> b;
add_undirected(tree, a, b, 1);
edges[i] = Edge<int>(a,b,1);
}
int q; cin >> q;
HLDecomposition hld(tree);
SegmentTreeRangeProductQuery<M> seg(n, M::make_unit());
REP(_,q){
char c; cin >> c;
if(c == 'x'){
int i,x00,x01,x10,x11; cin >> i >> x00 >> x01 >> x10 >> x11;
M m({{x00,x01}, {x10,x11}});
auto &e = edges[i];
int id = hld.get_edge_id(e.from, e.to);
seg.update(id, m);
}else{
int i,j; cin >> i >> j;
M ans = M::make_unit();
auto f = [&](int x, int y){
ans = seg.get(x,y) * ans;
};
hld.path_query_edge(i,j,f);
cout << ans[0][0] << " " << ans[0][1] << " " << ans[1][0] << " " << ans[1][1] << endl;
//ans.show();
}
}
return 0;
}