結果
問題 | No.650 行列木クエリ |
ユーザー | Haar |
提出日時 | 2019-09-09 23:11:06 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 174 ms / 2,000 ms |
コード長 | 11,829 bytes |
コンパイル時間 | 3,314 ms |
コンパイル使用メモリ | 215,064 KB |
最終ジャッジ日時 | 2025-01-07 17:32:17 |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,824 KB |
testcase_01 | AC | 70 ms
8,576 KB |
testcase_02 | AC | 163 ms
28,144 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 68 ms
8,576 KB |
testcase_05 | AC | 174 ms
28,168 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 63 ms
9,216 KB |
testcase_09 | AC | 120 ms
32,024 KB |
testcase_10 | AC | 2 ms
6,820 KB |
ソースコード
#include <bits/stdc++.h> #define LLI long long int #define FOR(v, a, b) for(LLI v = (a); v < (b); ++v) #define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(LLI v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define fst first #define snd second #define popcount __builtin_popcount #define UNIQ(v) (v).erase(unique(ALL(v)), (v).end()) #define bit(i) (1LL<<(i)) #ifdef DEBUG #include <misc/C++/Debug.cpp> #else #define dump(...) ((void)0) #endif #define gcd __gcd using namespace std; template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;} template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;} template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);} template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);} template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} struct Init{ Init(){ cin.tie(0); ios::sync_with_stdio(false); } }init; template <uint32_t M> class ModInt{ public: uint64_t val; ModInt(): val(0){} ModInt(int64_t n){ if(n >= M) val = n % M; else if(n < 0) val = n % M + M; else val = n; } inline constexpr ModInt operator+(const ModInt &a) const {return ModInt((val+a.val)%M);} inline constexpr ModInt operator-(const ModInt &a) const {return ModInt((val-a.val+M)%M);} inline constexpr ModInt operator*(const ModInt &a) const {return ModInt((val*a.val)%M);} inline constexpr ModInt operator/(const ModInt &a) const {return ModInt((val*a.inv().val)%M);} inline constexpr ModInt& operator=(const ModInt &a){val = a.val; return *this;} inline constexpr ModInt& operator+=(const ModInt &a){if((val += a.val) >= M) val -= M; return *this;} inline constexpr ModInt& operator-=(const ModInt &a){if(val < a.val) val += M; val -= a.val; return *this;} inline constexpr ModInt& operator*=(const ModInt &a){(val *= a.val) %= M; return *this;} inline constexpr ModInt& operator/=(const ModInt &a){(val *= a.inv().val) %= M; return *this;} inline constexpr bool operator==(const ModInt &a) const {return val==a.val;} inline constexpr bool operator!=(const ModInt &a) const {return val!=a.val;} inline constexpr static ModInt power(LLI n, LLI p){ ModInt ret = 1, e = n; for(; p; e *= e, p >>= 1) if(p&1) ret *= e; return ret; } inline constexpr ModInt power(LLI p) const{return power(val,p);} inline constexpr ModInt inv() const{ int64_t a = val, b = M, u = 1, v = 0; while(b){ int64_t t = a/b; a -= t*b; swap(a,b); u -= t*v; swap(u,v); } u %= M; if(u < 0) u += M; return u; } }; template <uint32_t M> ModInt<M> operator-(const ModInt<M> &a){return M-a.val;} template <uint32_t M> ModInt<M> operator+(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)+b.val);} template <uint32_t M> ModInt<M> operator-(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)-b.val);} template <uint32_t M> ModInt<M> operator*(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)*b.val);} template <uint32_t M> ModInt<M> operator/(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)/b.val);} template <uint32_t M> istream& operator>>(istream &is, ModInt<M> &a){is >> a.val; return is;} template <uint32_t M> ostream& operator<<(ostream &os, const ModInt<M> &a){ os << a.val; return os;} template <typename T, int N> struct SquareMatrix{ array<array<T,N>,N> matrix; SquareMatrix(): matrix(){} SquareMatrix(const T &val){ REP(i,N) matrix[i].fill(val); } SquareMatrix(const SquareMatrix<T,N> &) = default; SquareMatrix(SquareMatrix<T,N> &&) = default; SquareMatrix(initializer_list<initializer_list<T>> list){ int i = 0; ITR(it1,list){ int j = 0; ITR(it2,*it1){ matrix[i][j] = *it2; ++j; } ++i; } } bool operator==(const SquareMatrix<T,N> &val) const { return matrix == val.matrix; } bool operator!=(const SquareMatrix<T,N> &val) const { return !(*this == val); } SquareMatrix& operator=(const SquareMatrix &) = default; SquareMatrix& operator+=(const SquareMatrix &val){ REP(i,N) REP(j,N) matrix[i][j] = matrix[i][j] + val[i][j]; return *this; } SquareMatrix& operator-=(const SquareMatrix &val){ REP(i,N) REP(j,N) matrix[i][j] = matrix[i][j] - val[i][j]; return *this; } SquareMatrix& operator*=(const SquareMatrix &val){ array<array<T,N>,N> temp = {}; REP(i,N) REP(j,N) REP(k,N) temp[i][j] = temp[i][j] + matrix[i][k] * val[k][j]; swap(matrix, temp); return *this; } inline const auto& operator[](size_t i) const {return matrix[i];} inline auto& operator[](size_t i){return matrix[i];} inline int size() const {return N;} static SquareMatrix<T,N> make_unit(){ SquareMatrix<T,N> ret; REP(i,N) ret[i][i] = 1; return ret; } SquareMatrix<T,N> transpose() const { SquareMatrix<T,N> ret; REP(i,N) REP(j,N) ret[i][j] = matrix[j][i]; return ret; } T determinant(){ int s = 0; REP(i,N){ if(matrix[i][i] == 0){ FOR(j,i+1,N){ if(matrix[j][i] != 0){ matrix[i].swap(matrix[j]); (s += 1) %= 2; break; } if(j == N-1) return 0; } } FOR(j,i+1,N){ T t = matrix[j][i] / matrix[i][i]; REP(k,N) matrix[j][k] -= matrix[i][k] * t; } } T ret = s ? -1 : 1; REP(i,N) ret *= matrix[i][i]; return ret; } void show(int w = 10) const { REP(i,N){ cerr << (i==0 ? "⎛" : (i==N-1 ? "⎝" : "⎜")); REP(j,N) cerr << setw(w) << matrix[i][j] << " "; cerr << (i==0 ? "⎞" : (i==N-1 ? "⎠" : "⎟")); cerr << endl; } } }; template <typename T, int N> SquareMatrix<T,N> operator+(const SquareMatrix<T,N> &a, const SquareMatrix<T,N> &b){auto ret = a; ret += b; return ret;} template <typename T, int N> SquareMatrix<T,N> operator-(const SquareMatrix<T,N> &a, const SquareMatrix<T,N> &b){auto ret = a; ret -= b; return ret;} template <typename T, int N> SquareMatrix<T,N> operator*(const SquareMatrix<T,N> &a, const SquareMatrix<T,N> &b){auto ret = a; ret *= b; return ret;} template <typename T, int N> SquareMatrix<T,N> power(SquareMatrix<T,N> a, uint64_t p){ if(p == 0) return SquareMatrix<T,N>::make_unit(); if(p == 1) return a; SquareMatrix<T,N> temp = power(a, p/2); auto ret = temp * temp; if(p%2) ret *= a; return ret; } template <typename T, int N> vector<T> operator*(const SquareMatrix<T,N> &a, const vector<T> &b){ vector<T> ret(N); REP(i,N){ REP(j,N){ ret[i] += a[i][j] * b[j]; } } return ret; } template <typename T, int N> vector<T> operator*(const vector<T> &b, const SquareMatrix<T,N> &a){ vector<T> ret(N); REP(i,N){ REP(j,N){ ret[j] += b[i] * a[i][j]; } } return ret; } template <typename T> class SegmentTreeRangeProductQuery{ private: int size; vector<T> vec; T e; inline T aux(int x, int y, int i, int l, int r){ if(r<=x || y<=l) return e; else if(x<=l && r<=y) return vec[i]; else return aux(x,y,i*2+1,l,(l+r)/2) * aux(x,y,i*2+2,(l+r)/2,r); }; public: SegmentTreeRangeProductQuery(int n, const T &e): e(e){ size = 1; while(size < n) size *= 2; size = size*2-1; vec = vector<T>(size, e); } inline void update(int i, const T &x){ int j = i+(size+1)/2-1; vec[j] = x; --j; while(j>=0){ vec[j/2] = vec[(j/2)*2+1] * vec[(j/2)*2+2]; (j /= 2) -= 1; } } inline T at(int i){ return vec[(size+1)/2 + i - 1]; } inline T get(int x, int y){ // [x,y) return aux(x,y,0,0,(size+1)/2); } }; template <typename Cost = int> class Edge{ public: int from,to; Cost cost; Edge() {} Edge(int to, Cost cost): to(to), cost(cost){} Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){} Edge rev() const {return Edge(to,from,cost);} friend ostream& operator<<(ostream &os, const Edge &e){ os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")"; return os; } }; template <typename T> using Graph = vector<vector<Edge<T>>>; template <typename T> using Tree = vector<vector<Edge<T>>>; template <typename C, typename T> void add_edge(C &g, int from, int to, T w){ g[from].push_back(Edge<T>(from, to, w)); } template <typename C, typename T> void add_undirected(C &g, int a, int b, T w){ g[a].push_back(Edge<T>(a, b, w)); g[b].push_back(Edge<T>(b, a, w)); } template <typename T> class HLDecomposition{ Tree<T> tree; int n; vector<int> sub, par, head, id, rid, next, end; int dfs_sub(int cur, int p){ par[cur] = p; int t = 0; for(auto &e : tree[cur]){ if(e.to == p) continue; sub[cur] += dfs_sub(e.to, cur); if(sub[e.to] > t){ t = sub[e.to]; next[cur] = e.to; swap(e, tree[cur][0]); } } return sub[cur]; } void dfs_build(int cur, int &i){ id[cur] = i; rid[i] = cur; ++i; for(auto &e : tree[cur]){ if(e.to == par[cur]) continue; head[e.to] = (e.to == tree[cur][0].to ? head[cur] : e.to); dfs_build(e.to, i); } end[cur] = i; } public: HLDecomposition(const Tree<T> &tree): tree(tree), n(tree.size()), sub(n,1), par(n,-1), head(n), id(n), rid(n), next(n,-1), end(n, -1){ dfs_sub(0, -1); int i=0; dfs_build(0, i); } void path_query_vertex(int x, int y, const function<void(int,int)> &f){ while(1){ if(id[x] > id[y]) swap(x, y); f(max(id[head[y]], id[x]), id[y]+1); if(head[x] == head[y]) return; y = par[head[y]]; } } void path_query_edge(int x, int y, const function<void(int,int)> &f){ while(1){ if(id[x] > id[y]) swap(x, y); if(head[x] == head[y]){ if(x != y) f(id[x]+1, id[y]+1); return; } f(id[head[y]], id[y]+1); y = par[head[y]]; } } void subtree_query_edge(int x, const function<void(int,int)> &f){ f(id[x]+1, end[x]); } int get_edge_id(int u, int v){ // 辺に対応するid if(par[u] == v){ return id[u]; }else if(par[v] == u){ return id[v]; } return -1; } int parent(int x){return par[x];}; }; const LLI mod = 1e9+7; using mint = ModInt<mod>; using M = SquareMatrix<mint,2>; int main(){ int n; cin >> n; Tree<int> tree(n); vector<Edge<int>> edges(n-1); REP(i,n-1){ int a,b; cin >> a >> b; add_undirected(tree, a, b, 1); edges[i] = Edge<int>(a,b,1); } int q; cin >> q; HLDecomposition hld(tree); SegmentTreeRangeProductQuery<M> seg(n, M::make_unit()); REP(_,q){ char c; cin >> c; if(c == 'x'){ int i,x00,x01,x10,x11; cin >> i >> x00 >> x01 >> x10 >> x11; M m({{x00,x01}, {x10,x11}}); auto &e = edges[i]; int id = hld.get_edge_id(e.from, e.to); seg.update(id, m); }else{ int i,j; cin >> i >> j; M ans = M::make_unit(); auto f = [&](int x, int y){ ans = seg.get(x,y) * ans; }; hld.path_query_edge(i,j,f); cout << ans[0][0] << " " << ans[0][1] << " " << ans[1][0] << " " << ans[1][1] << endl; //ans.show(); } } return 0; }